

 Navigation

 	
 index

 	Xapian docs documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a ./index.rst or ./README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Xapian docs documentation

Index

 Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

 xapian-core/docs/termgenerator.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian 1.0 Term Indexing/Querying Scheme

Table of contents

		Xapian 1.0 Term Indexing/Querying Scheme
		Introduction

		Stemming

		Word Characters

Introduction

In Xapian 1.0, the default indexing scheme has been changed significantly, to address
lessons learned from observing the old scheme in real world use. This document
describes the new scheme, with references to differences from the old.

Stemming

The most obvious difference is the handling of stemmed forms.

Previously all words were indexed stemmed without a prefix, and capitalised words were
indexed unstemmed (but lower cased) with an ‘R’ prefix. The rationale for doing this was
that people want to be able to search for exact proper nouns (e.g. the English stemmer
conflates Tony and Toni). But of course this also indexes words at the start
of sentences, words in titles, and in German all nouns are capitalised so will be indexed.
Both the normal and R-prefixed terms were indexed with positional information.

Now we index all words lowercased with positional information, and also stemmed with a
‘Z’ prefix (unless they start with a digit), but without positional information. By default
a Xapian::Stopper is used to avoid indexed stemmed forms of stopwords (tests show this shaves
around 1% off the database size).

The new scheme allows exact phrase searching (which the old scheme didn’t). NEAR
now has to operate on unstemmed forms, but that’s reasonable enough. We can also disable
stemming of words which are capitalised in the query, to achieve good results for
proper nouns. And Omega’s $topterms will now always suggest unstemmed forms!

The main rationale for prefixing the stemmed forms is that there are simply fewer of
them! As a side benefit, it opens the way for storing stemmed forms for multiple
languages (e.g. Z:en:, Z:fr: or something like that).

The special handling of a trailing . in the QueryParser (which would often
mistakenly trigger for pasted text) has been removed. This feature was there to
support Omega’s topterms adding stemmed forms, but Omega no longer needs to do this
as it can suggest unstemmed forms instead.

Word Characters

By default, Unicode characters of category CONNECTOR_PUNCTUATION (_ and a
handful of others) are now word characters, which provides better indexing of
identifiers, without much degradation of other cases. Previously cases like
time_t required a phrase search.

Trailing + and # are still included on terms (up to 3 characters at most), but
- no longer is by default. The examples it benefits aren’t compelling
(nethack--, Cl-) and it tends to glue hyphens on to terms.

A single embedded ' (apostrophe) is now included in a term.
Previously this caused a slow phrase search, and added junk terms to the index
(didn't -> didn and t, etc). Various Unicode characters used for apostrophes
are all mapped to the ASCII representation.

A few other characters (taken from the Unicode definition of a word) are included
in terms if they occur between two word characters, and ., , and a
few others are included in terms if they occur between two decimal digit characters.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/matcherdesign.html

 Navigation

 		
 index

 		Xapian docs documentation »

Matcher Design Notes

This document is incomplete at present. It lacks explanation of the
min-heap used to keep the best N M-set items (Managing Gigabytes
describes this technique well), the check() method isn’t discussed, and
probably some other things.

The PostList Tree

The QueryOptimiser class builds a tree structure of PostList objects
from the query. At the leaf level, a PostList object is created for each
term, and for other leaf-level subqueries, like PostingSource objects
and value ranges. Then pairs or groups of PostLists are combined using
2-way or n-way branching tree elements for AND, OR, etc - these are
virtual PostLists whose class names reflect the operation
(MultiAndPostList, OrPostList, etc). See below for a full list.

OR

For a group of OR operations, each OrPostList has two children, job).
The OR tree is built up in a similar way to how an optimal huffman code
is constructed, so the sub-PostLists with the fewest entries are
furthest down the tree, and those with most nearest the top (this is
more efficient than an n-ary tree in terms of the number of comparisons
which need to be performed, ignoring various optimisations which the
matcher can perform - it may actually be the case that a MultiOrPostList
could do a better job in practice though).

OR is coded for maximum efficiency when the right branch has fewer
postings in than the left branch.

When an OR gets “at end”, it autoprunes, replacing itself with the
branch that still has postings - see below for full details.

AND

For a multi-way AND operation, we have MultiAndPostList, which tries the
sub-postlists in order from least frequent to most frequent (two-way AND
is handled the same way). This will generally minimise the number of
posting list entries we read and maximises the size of each skip_to.

When one of a sub-trees of AND operations runs out, the sub-query will
signal “at end”, and this causes the AND to signal “at end” too.

The OP_FILTER query operator is actually treated as AND in the postlist
tree - the boolean-ness is pushed down to the leaf query, where it is
handled by the Weight object.

Other operations

The other operations also handle “at end” either like OR or AND (for
asymmetric operations like AND_MAYBE, which happens may depend which
branch has run out).

running the match

Once the tree is built, the matcher repeatedly asks the root of the tree
for the next matching document and compares it to those in the
proto-mset it maintains. Once the proto-mset is of the desired final
size, the candidate needs to score more highly that the lowest scoring
document in the proto-mset (either by weight, or in sort order if
sorting is used) to be interesting. If it is, the lowest scoring
document is removed (which is easy as we store the proto-mset as a min
heap) and the candidate is added.

When the matcher itself gets “at end” from the postlist tree, the match
process ends.

The matcher also passes the lowest weight currently needed make the
proto-mset into the tree, and each node may adjust this weight and pass
it on to its subtrees. Each PostList can report a minimum weight it
could contribute - so if the left branch of an AND will always return a
weight of 2 or more, then if the whole AND needs to return at least 6,
the right branch is told it needs to return at least 4.

For example, an OR knows that if its left branch can contribute at most
a weight of 4 and its right branch at most 7, then if the minimum weight
is 8, only documents matching both branches are now of interest so it
mutates into an AND. If the minimum weight is 6 it changes into an
AND_MAYBE (A AND_MAYBE B matches documents which which match A, but B
contributes to the weight - in most search engines query syntax, that’s
expressed as +A B). See the “Operator Decay” section below for full
details of these mutations. If the minimum weight needed is 12, no
document is good enough, and the OR returns “end of list”.

Phrase and near matching

The way phrase and near matching works is to perform an AND query for
all the terms, with a filter node in front which only returns documents
whose positional information fulfils the phrase requirements.

Because checking the positional information can be quite costly compared
to matching postlist trees, we hoist the position check higher up the
tree in cases when the phrase operation is below an AND. So A AND (B
NEAR C) will actually filter the results of (A AND B AND C) through a
check for B NEAR C, which means we never need to check positions for
documents which don’t match A.

virtual postlist types

There are several types of virtual PostList. Each type can be treated as
boolean or probabilistic - the only difference is whether the weights
are ignored or not. The types are:

		OrPostList: returns documents which match either branch

		MultiAndPostList: returns documents which match all branches

		MultiXorPostList: returns documents which match an odd number of
branches

		AndNotPostList: returns documents which match the left branch, but
not the right (the weights of documents from the right branch are
ignored).

		AndMaybePostList: returns documents which match the left branch -
weights from documents also in the right branch are added in for the
probabilistic case (“X ANDMAYBE Y” is what Altavista did for “+X Y”).

		FIXME: this list is no longer complete...

[Note: You can use AndNotPostList to apply an inverted boolean filter to
a probabilistic query]

There are two main optimisations which the best match performs:
autoprune and operator decay.

autoprune

For example, if a branch in the match tree is “A OR B”, when A runs out
then “A OR B” is replaced by “B”. Similar reductions occur for XOR,
ANDNOT, and ANDMAYBE (if the right branch runs out). Other operators
(AND, FILTER, and ANDMAYBE (when the left branch runs out) simply return
“at_end” and this is dealt with somewhere further up the tree as
appropriate.

An autoprune is indicated by the next or skip_to method returning a
pointer to the PostList object to replace the postlist being read with.

operator decay

The matcher tracks the minimum weight needed for a document to make it
into the m-set (this decreases monotonically as the m-set forms). This
can be used to replace on boolean operator with a stricter one. E.g.
consider A OR B - when maxweight(A) < minweight and maxweight(B) <
minweight then only documents matching both A and B can make it into the
m-set so we can replace the OR with an AND. Operator decay is flagged
using the same mechanism as autoprune, by returning the replacement
operator from next or skip_to.

Possible decays:

		OR → AND

		OR → ANDMAYBE

		ANDMAYBE → AND

		XOR → ANDNOT

A related optimisation is that the Match object may terminate early if
maxweight for the whole tree is less than the smallest weight in the
mset.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/serialisation.html

 Navigation

 		
 index

 		Xapian docs documentation »

Serialisation of Queries and Documents

Table of contents

		Serialisation of Queries and Documents
		Introduction

		Serialising Documents

		Serialising Queries

Introduction

In order to pass Query and Document objects to or from remote databases, Xapian
includes support for serialising these objects to strings, and then converting
these strings back into objects. This support may be accessed directly, and
used for storing persistent representations of Query and Document objects.

Be aware that the serialised representation may occasionally change between
releases. This will be clearly noted in the release notes.

Serialising Documents

To get a serialised document, simply call the Document::serialise() method
on the instance of the document:

std::string serialise() const;

Documents are often lazily fetched from databases: this method will first force
the full document contents to be fetched from the database, in order to
serialise them. The serialised document will have identical contents (data,
terms, positions, values) to the original document.

To get a document from a serialised form, call the static
Document::unserialise() method, passing it the string returned from
serialise():

static Document unserialise(const std::string &s);

Serialising Queries

Serialisation of queries is very similar to serialisation of documents: there
is a Query::serialise() method to produce a serialised Query, and a
corresponding Query::unserialise() method to produce a Query from a
serialised representation:

std::string serialise() const;
static Query unserialise(const std::string &s);

However, there is a wrinkle. Queries can contain arbitrary user-defined
PostingSource subqueries. In order to serialise and unserialise such queries,
all the PostingSource subclasses used in the query must implement the
name(), serialise() and unserialise() methods (see the
postingsource topic document for details of these).
In addition, a special form of unserialise must be used:

static Query unserialise(const std::string & s, const Registry & registry);

The Registry passed to this method must know about all the
custom posting sources used in the query. You can tell a Registry
about a custom posting source using the
Registry::register_posting_source method:

void register_posting_source(const Xapian::PostingSource &source);

Note that Registry objects always know about built-in posting sources
(such as ValueWeightPostingSource), so you don’t need to call
register_posting_source() for them.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/internals.html

 Navigation

 		
 index

 		Xapian docs documentation »

 matcher | tests |
internal classes

Xapian Internals

This page groups together the documentation of the internals of Xapian.
This is useful if you intend to modify Xapian, but if you just want to
use Xapian in your own code, see the user documentation instead.

Use the navigation links above to find the information you want. Also,
see the “HACKING” file in the xapian-core source distribution.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/java/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Java Bindings

How to build the bindings:

Running “make” and then “make install” will “install” a JNI glue shared library
into a “built” subdirectory of the java build directory. The jar file is built
into the “built” subdirectory too.

You can copy these two files into your java installation, or just use them
in-place.

How to compile the examples:

cd java
javac -classpath built/xapian_jni.jar:. org/xapian/examples/SimpleIndex.java
javac -classpath built/xapian_jni.jar:. org/xapian/examples/SimpleSearch.java

How to run the examples:

To run the examples, you need to give Java a special system-property named
“java.library.path”. The value of this property is the path of the directory
where the libxapian_jni.so (or whatever extension is used on your platform)
JNI library is located.

java -Djava.library.path=built -classpath built/xapian_jni.jar:. \
 org.xapian.examples.SimpleIndex ./test.db index words like java

java -Djava.library.path=built -classpath built/xapian_jni.jar:. \
 org.xapian.examples.SimpleSearch ./test.db index words like java

Alternatively, you can avoid needing the -Djava.library.path setting by
setting the LD_LIBRARY_PATH environment variable, or by installing the JNI
library in the appropriate directory so your JVM finds it automatically
(for example, on Mac OS X you can copy it into /Library/Java/Extensions/).

The java bindings have been tested recently with OpenJDK 1.6.0_18, though
they should work with any java toolchain with suitable JNI support - please
report success stories or any problems to the development mailing list:
xapian-devel@lists.xapian.org

Naming of wrapped methods:

Methods are renamed to match Java’s naming conventions. So get_mset becomes
getMSet, etc. Also get_description is wrapped as toString.

MatchAll and MatchNothing

In Xapian 1.3.0 and later, these are wrapped as static constants
Query.MatchAll and Query.MatchNothing.

If you want to be compatible with earlier versions, you can continue to use
new Query("") instead of Query.MatchAll and new Query() instead of
Query.MatchNothing.

TODO list:

		Finish updating this document for the move to the SWIG-generated Java
bindings.

		Write SimpleExpand.java.

		Fix string passing to be zero-byte clean.

		Check that the missing wrappers in the JNI bindings are now present and
add them to SmokeTest:

		Wrap optional parameter “parameter” for Query ctor.

		Wrap new QueryParser API.

		Wrap changes to Enquire sorting API.

		Use Stem::operator() rather than Stem::stem_word().

		Wrap new method ESet::back().

		Wrap the new optional third parameter to Enquire::set_sorting().

		Third (optional) argument to Document::add_posting() isn’t wrapped.

		Wrap Xapian::Weight and standard subclasses.

		Allow user derived weight classes to be implemented in Java (less important).

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

 website [http://xapian.org/] | install |
quickstart | overview |
sysadmins | scalability |
API | deprecated
| IR | wiki [http://trac.xapian.org/wiki]

Xapian - the open source search engine

Getting Started

There’s a new
Getting Started with Xapian [http://getting-started-with-xapian.readthedocs.org/]
guide, which is the recommended place to start.

Documentation

The Omega search application has its own documentation [http://xapian.org/docs/omega/], and there’s also separate
documentation for the other language bindings [http://xapian.org/docs/bindings/].

We suggest you start by reading the Installation
Guide, which covers downloading the code, and
unpacking, configuring, building and installing it.

For a quick introduction to our software, including a walk-through
example of an application for searching through some data, read the
Quickstart document.

The glossary provides definitions for specialized
terminology you might encounter while using Xapian.

The Overview explains the API which Xapian provides
to programmers. A full API Reference
(PDF) is automatically collated using doxygen from
documentation comments in the source code. There’s also a list of
deprecated features which lists features scheduled for
removal, and also features already removed, along with suggestions for
replacements.

If you want to learn more about probabilistic information retrieval,
there’s a (reasonably mathematical) introduction to the ideas behind
Xapian which also suggests some books you might want
to read.

There are a number of documents which cover particular features:

		BM25 Weighting Scheme

		Collapsing

		Database Replication

		Faceting

		Indexing

		PostingSource

		Query Parser

		Remote Backend

		Serialising Queries and Documents

		Sorting Results

		Spelling Correction

		Stemming Algorithms

		Synonym Support

		Value Ranges

For those wishing to do development work on the Xapian library itself,
there is documentation of Xapian’s internals
available.

We also have a wiki [http://trac.xapian.org/wiki] for documentation
and examples contributed by the Xapian community.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/php/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

PHP bindings for Xapian

The PHP bindings for Xapian are packaged in the xapian
extension. The PHP API provided by this extension largely follows Xapian’s C++
API. This document lists the differences and additions.

As of Xapian version 1.3.2, these bindings require at least PHP 5.4.
(Older versions of PHP are now out of security support, but if you really need
support for them then Xapian 1.2 supports PHP 5.0 and later).

PHP strings, arrays, etc., are converted automatically to and from the
corresponding C++ types in the bindings, so generally you can pass arguments as
you would expect. One thing to be aware of though is that SWIG implements
dispatch functions for overloaded methods based on the types of the parameters,
so you can’t always pass in a string containing a number (e.g.
"42") where a number is expected as you usually can in PHP.
You need to
explicitly convert to the type required - e.g. use (int) to
convert to an integer, (string) to string, (double)
to a floating point number.

With version 1.2.6 and later, you can subclass Xapian classes in PHP and
virtual methods defined in PHP are called from C++ in the way you’d expect.

PHP has a lot of reserved words of various sorts, which sadly clash with common
method names. Because of this empty() methods of various
container-like classes are wrapped as is_empty() for PHP
and the clone() method of the XapianWeight
class and subclasses is wrapped as clone_object().

The examples subdirectory contains examples showing how to use the
PHP bindings based on the simple examples from xapian-examples:
simpleindex.php5,
simplesearch.php5,
simpleexpand.php5,
simplematchdecider.php5.

Note that these examples are written to work with the command line (CLI)
version of the PHP interpreter, not through a webserver. Xapian’s PHP
bindings may of course also be used under CGI, Apache’s modphp, ISAPI,
etc.

Installation

Assuming you have a suitable version of PHP installed, running
configure will automatically enable the PHP bindings, and
make install will install the extension shared library in
the location reported by php-config --extension-dir.

Check that php.ini has a line like extension_dir = "<location reported by php-config --extension-dir>".

Then add this line to php.ini: extension = xapian.so (or
whatever the library is called - not all UNIX systems use .so
as the extension, and MS Windows uses .dll).

If you’re using PHP as a webserver module (e.g. mod_php with Apache), you
may need to restart the webserver for this change to take effect.

You also need to add include "xapian.php"
to your PHP scripts which use Xapian in order to get the PHP class wrappers.

Exceptions

Exceptions thrown by Xapian are translated into PHP Exception objects
which are thrown into the PHP script.

Object orientation

These PHP bindings use a PHP object oriented style.

To construct an object, use
$object = new XapianClassName(...);. Objects are destroyed
when they go out of scope - to explicitly destroy an object you can use
unset($object); or $object = Null;

You invoke a method on an object using $object->method_name().

Unicode Support

The Xapian::Stem, Xapian::QueryParser, and
Xapian::TermGenerator classes all assume text is in UTF-8. If you want
to index strings in a different encoding, use the PHP iconv function [http://php.net/iconv] to convert them to UTF-8 before passing them to Xapian, and when reading values back from Xapian.

Iterators

Since Xapian 1.3.2, Xapian’s iterators (except XapianLatLongCoordsIterator)
are wrapped as PHP iterators, so can be used in foreach.

There’s one important thing to beware of currently - the rewind() method
on XapianPositionIterator, XapianPostingIterator,
XapianTermIterator and XapianValueIterator currently does nothing. We
can’t make it simply throw an exception, as foreach calls rewind()
before iteration starts - each iterator needs to track if next() has been
called yet, and we’ve not yet implemented machinery for that. This doesn’t
affect the standard pattern of iterating once with foreach, but if you want
to iterate a second time, you can’t reuse the iterator (but it will currently
fail quietly).

You can safely call rewind() on XapianESetIterator and
XapianMSetIterator.

The current() method returns the result of dereferencing the iterator
in C++ (e.g. for a TermIterator, it returns the term as a string - see
the section below for more details) and the key() method returns the
iterator object, which you can call other methods on, for example:

foreach ($db->allterms_begin() as $k => $term) {
 print "{$k->get_termfreq()}\t$term\n";
}

As well as the standard PHP iterator methods, MSetIterator and ESetIterator
also support prev() to go back one place.

Iterator dereferencing

C++ iterators are often dereferenced to get information, eg
(*it). With PHP these are all mapped to named methods, as
follows:

		Iterator
		Dereferencing method

		PositionIterator
		get_termpos()

		PostingIterator
		get_docid()

		TermIterator
		get_term()

		ValueIterator
		get_value()

		MSetIterator
		get_docid()

		ESetIterator
		get_term()

Other methods, such as MSetIterator::get_document(), are
available unchanged.

MSet

MSet objects have some additional methods to simplify access (these
work using the C++ array dereferencing):

		Method name
		Explanation

		get_hit(index)
		returns MSetIterator at index

		get_document_percentage(index)
		convert_to_percent(get_hit(index))

		get_document(index)
		get_hit(index)->get_document()

		get_docid(index)
		get_hit(index)->get_docid()

Database Factory Functions

		Xapian::Auto::open_stub(file) is wrapped as Xapian::auto_open_stub(file) (now deprecated)

		Xapian::Chert::open() is wrapped as Xapian::chert_open() (now deprecated)

		Xapian::InMemory::open() is wrapped as Xapian::inmemory_open()

		Xapian::Remote::open(...) is wrapped as Xapian::remote_open(...) (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

		Xapian::Remote::open_writable(...) is wrapped as Xapian::remote_open_writable(...) (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

Constants

Constants are wrapped as const members of the appropriate class.
So Xapian::DB_CREATE_OR_OPEN is available as
Xapian::DB_CREATE_OR_OPEN, Xapian::Query::OP_OR is
available as XapianQuery::OP_OR, and so on.

Functions

Non-class functions are wrapped in the natural way, so the C++
function Xapian::version_string is wrapped under the same
name in PHP.

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter. In PHP, this is wrapped to accept an array listing the terms
and/or queries (you can specify a mixture of terms and queries if you wish)
For example:

$subq = new XapianQuery(XapianQuery::OP_AND, "hello", "world");
$q = new XapianQuery(XapianQuery::OP_AND, array($subq, "foo", new XapianQuery("bar", 2)));

MatchAll and MatchNothing

In Xapian 1.3.0 and later, these are wrapped as static methods
XapianQuery::MatchAll() and XapianQuery::MatchNothing().

If you want to be compatible with earlier versions, you can continue to use
new XapianQuery('') for MatchAll and
new XapianQuery() for MatchNothing.

Enquire

There is an additional method get_matching_terms() which takes
an MSetIterator and returns a list of terms in the current query which
match the document given by that iterator. You may find this
more convenient than using the TermIterator directly.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/replication.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Database Replication Users Guide

Table of contents

		Xapian Database Replication Users Guide
		Introduction

		Backend Support

		Setting up replicated databases

		Limitations
		Calling reopen

		Alternative approaches
		Copying database after each update

		Synchronise database using rsync

		Use a binary diff algorithm

		Serve database from master to slaves over NFS

		Use the “remote database backend” facility

Introduction

It is often desirable to maintain multiple copies of a Xapian database, having
a “master” database which modifications are made on, and a set of secondary
(read-only, “slave”) databases which these modifications propagate to. For
example, to support a high query load there may be many search servers, each
with a local copy of the database, and a single indexing server. In order to
allow scaling to a large number of search servers, with large databases and
frequent updates, we need an database replication implementation to have the
following characteristics:

		Data transfer is (at most) proportional to the size of the updates, rather
than the size of the database, to allow frequent small updates to large
databases to be replicated efficiently.

		Searching (on the slave databases) and indexing (on the master database) can
continue during synchronisation.

		Data cached (in memory) on the slave databases is not discarded (unless it’s
actually out of date) as updates arrive, to ensure that searches continue to
be performed quickly during and after updates.

		Synchronising each slave database involves low overhead (both IO and CPU) on
the server holding the master database, so that many slaves can be updated
from a single master without overloading it.

		Database synchronisation can be recovered after network outages or server
failures without manual intervention and without excessive data transfer.

The database replication protocol is intended to support replicating a single
writable database to multiple (read-only) search servers, while satisfying all
of the above properties. It is not intended to support replication of multiple
writable databases - there must always be a single master database to which all
modifications are made.

This document gives an overview of how and why to use the replication protocol.
For technical details of the implementation of the replication protocol, see
the separate document net/replication_protocol.rst in the xapian-core
source tree.

Backend Support

Replication is supported by the chert, and glass database backends,
and can cleanly handle the
master switching database type (a full copy is sent in this situation). It
doesn’t make a lot of sense to support replication for the remote backend.
Replication of inmemory databases isn’t currently available. We have a longer
term aim to replace the current inmemory backend with the current disk based
backend (e.g. chert) but storing its data in memory. Once this is done, it
would probably be easy to support replication of inmemory databases.

Setting up replicated databases

To replicate a database efficiently from one master machine to other machines,
there is one configuration step to be performed on the master machine, and two
servers to run.

Firstly, on the master machine, the indexer must be run with the environment
variable XAPIAN_MAX_CHANGESETS set to a non-zero value, which will cause
changeset files to be created whenever a transaction is committed. A
changeset file allows the transaction to be replayed efficiently on a replica
of the database.

The value which XAPIAN_MAX_CHANGESETS is set to determines the maximum number
of changeset files which will be kept. The best number to keep depends on how
frequently you run replication and how big your transactions are - if all
the changeset files needed to update a replica aren’t present, a full copy of
the database will be sent, but at some point that becomes more efficient
anyway. 10 is probably a good value to start with.

Secondly, also on the master machine, run the xapian-replicate-server server
to serve the databases which are to be replicated. This takes various
parameters to control the directory that databases are found in, and the
network interface to serve on. The –help option will cause usage
information to be displayed. For example, if /var/search/dbs` contains a
set of Xapian databases to be replicated:

xapian-replicate-server /var/search/dbs -p 7010

would run a server allowing access to these databases, on port 7010.

Finally, on the client machine, run the xapian-replicate server to keep an
individual database up-to-date. This will contact the server on the specified
host and port, and copy the database with the name (on the master) specified in
the -m option to the client. One non-option argument is required - this is
the name that the database should be stored in on the slave machine. For
example, contacting the above server from the same machine:

xapian-replicate -h 127.0.0.1 -p 7010 -m foo foo2

would produce a database “foo2” containing a replica of the database
“/var/search/dbs/foo”. Note that the first time you run this, this command
will create the foo2 directory and populate it with appropriate files; you
should not create this directory yourself.

As of 1.2.5, if you don’t specify the master name, the same name is used
remotely and locally, so this will replicate remote database “foo2” to
local database “foo2”:

xapian-replicate -h 127.0.0.1 -p 7010 foo2

Both the server and client can be run in “one-shot” mode, by passing -o.
This may be particularly useful for the client, to allow a shell script to be
used to cycle through a set of databases, updating each in turn (and then
probably sleeping for a period).

Limitations

It is possible to confuse the replication system in some cases, such that an
invalid database will be produced on the client. However, this is easy to
avoid in practice.

To confuse the replication system, the following needs to happen:

		Start with two databases, A and B.

		Start a replication of database A.

		While the replication is in progress, swap B in place of A (ie, by moving
the files around, such that B is now at the path of A).

		While the replication is still in progress, swap A back in place of B.

If this happens, the replication process will not detect the change in
database, and you are likely to end up with a database on the client which
contains parts of A and B mixed together. You will need to delete the damaged
database on the client, and re-run the replication.

To avoid this, simply avoid swapping a database back in place of another one.
Or at least, if you must do this, wait until any replications in progress when
you were using the original database have finished.

Calling reopen

Database::reopen() is usually an efficient way to ensure that a database is
up-to-date with the latest changes. Unfortunately, it does not currently work
as you might expect with databases which are being updated by the replication
client. The workaround is simple; don’t use the reopen() method on such
databases: instead, you should close the database and open it
again from scratch.

Briefly, the issue is that the databases created by the replication client are
created in a subdirectory of the target path supplied to the client, rather
than at that path. A “stub database” file is then created in that directory,
pointing to the database. This allows the database which readers open to be
switched atomically after a database copy has occurred. The reopen() method
doesn’t re-read the stub database file in this situation, so ends up
attempting to read the old database which has been deleted.

We intend to fix this issue in the Glass backend (currently under development
by eliminating this hidden use of a stub database file).

Alternative approaches

Without using the database replication protocol, there are various ways in
which the “single master, multiple slaves” setup could be implemented.

		Copy database from master to all slaves after each update, then swap the new
database for the old.

		Synchronise databases from the master to the slaves using rsync.

		Keep copy of database on master from before each update, and use a binary
diff algorithm (e.g., xdelta) to calculate the changes, and then apply these
same changes to the databases on each slave.

		Serve database from master to slaves over NFS (or other remote file system).

		Use the “remote database backend” facility of Xapian to allow slave servers
to search the database directly on the master.

All of these could be made to work but have various drawbacks, and fail to
satisfy all the desired characteristics. Let’s examine them in detail:

Copying database after each update

Databases could be pushed to the slaves after each update simply by copying the
entire database from the master (using scp, ftp, http or one of the many other
transfer options). After the copy is completed, the new database would be made
live by indirecting access through a stub database and switching what it points to.

After a sufficient interval to allow searches in progress on the old database to
complete, the old database would be removed. (On UNIX filesystems, the old
database could be unlinked immediately, and the resources used by it would be
automatically freed as soon as the current searches using it complete.)

This approach has the advantage of simplicity, and also ensures that the
databases can be correctly re-synchronised after network outages or hardware
failure.

However, this approach would involve copying a large amount of data for each
update, however small the update was. Also, because the search server would
have to switch to access new files each time an update was pushed, the search
server will be likely to experience poor performance due to commonly accessed
pages falling out of the disk cache during the update. In particular, although
some of the newly pushed data would be likely to be in the cache immediately
after the update, if the combination of the old and new database sizes exceeds
the size of the memory available on the search servers for caching, either some
of the live database will be dropped from the cache resulting in poor
performance during the update, or some of the new database will not initially
be present in the cache after update.

Synchronise database using rsync

Rsync works by calculating hashes for the content on the client and the server,
sending the hashes from the client to the server, and then calculating (on the
server) which pieces of the file need to be sent to update the client. This
results in a fairly low amount of network traffic, but puts a fairly high CPU
load on the server. This would result in a large load being placed on the
master server if a large number of slaves tried to synchronise with it.

Also, rsync will not reliably update the database in a manner which allows the
database on a slave to be searched while being updated - therefore, a copy or
snapshot of the database would need to be taken first to allow searches to
continue (accessing the copy) while the database is being synchronised.

If a copy is used, the caching problems discussed in the previous section would
apply again. If a snapshotting filesystem is used, it may be possible to take
a read-only snapshot copy cheaply (and without encountering poor caching
behaviour), but filesystems with support for this are not always available, and
may require considerable effort to set up even if they are available.

Use a binary diff algorithm

If a copy of the database on the master before the update was kept, a binary
diff algorithm (such as “xdelta”) could be used to compare the old and new
versions of the database. This would produce a patch file which could be
transferred to the slaves, and then applied - avoiding the need for specific
calculations to be performed for each slave.

However, this requires a copy or snapshot to be taken on the master - which has
the same problems as previously discussed. A copy or snapshot would also need
to be taken on the slave, since a patch from xdelta couldn’t safely be applied
to a live database.

Serve database from master to slaves over NFS

NFS allows a section of a filesystem to be exported to a remote host. Xapian
is quite capable of searching a database which is exported in such a manner,
and thus NFS can be used to quickly and easily share a database from the master
to multiple slaves.

A reasonable setup might be to use a powerful machine with a fast disk as the
master, and use that same machine as an NFS server. Then, multiple slaves can
connect to that NFS server for searching the database. This setup is quite
convenient, because it separates the indexing workload from the search workload
to a reasonable extent, but may lead to performance problems.

There are two main problems which are likely to be encountered. Firstly, in
order to work efficiently, NFS clients (or the OS filesystem layer above NFS)
cache information read from the remote file system in memory. If there is
insufficient memory available to cache the whole database in memory, searches
will occasionally need to access parts of the database which are held only on
the master server. Such searches will take a long time to complete, because
the round-trip time for an access to a disk block on the master is typically a
lot slower than the round-trip time for access to a local disk. Additionally,
if the local network experiences problems, or the master server fails (or gets
overloaded due to all the search requests), the searches will be unable to be
completed.

Also, when a file is modified, the NFS protocol has no way of indicating that
only a small set of blocks in the file have been modified. The caching is all
implemented by NFS clients, which can do little other than check the file
modification time periodically, and invalidate all cached blocks for the file
if the modification time has changed. For the Linux client, the time between
checks can be configured by setting the acregmin and acregmax mount options,
but whatever these are set to, the whole file will be dropped from the cache
when any modification is found.

This means that, after every update to the database on the master, searches on
the slaves will have to fetch all the blocks required for their search across
the network, which will likely result in extremely slow search times until the
cache on the slaves gets populated properly again.

Use the “remote database backend” facility

Xapian has supported a “remote” database backend since the very early days of
the project. This allows a search to be run against a database on a remote
machine, which may seem to be exactly what we want. However, the “remote”
database backend works by performing most of the work for a search on the
remote end - in the situation we’re concerned with, this would mean that most
of the work was performed on the master, while slaves remain largely idle.

The “remote” database backend is intended to allow a large database to be
split, at the document level, between multiple hosts. This allows systems to
be built which search a very large database with some degree of parallelism
(and thus provide faster individual searches than a system searching a single
database locally). In contrast, the database replication protocol is intended
to allow a database to be copied to multiple machines to support a high
concurrent search load (and thus to allow a higher throughput of searches).

In some cases (i.e., a very large database and a high concurrent search load)
it may be perfectly reasonable to use both the database replication protocol in
conjunction with the “remote” database backend to get both of these advantages
- the two systems solve different problems.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/tcl8/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Tcl8 bindings for Xapian

The Tcl8 bindings for Xapian are packaged in the xapian namespace,
and largely follow the C++ API, with the following differences and
additions. Tcl8 strings and lists, etc., are converted automatically
in the bindings, so generally it should just work as expected.

The examples subdirectory contains examples showing how to use the
Tcl8 bindings based on the simple examples from xapian-examples:
simpleindex.tcl,
simplesearch.tcl,
simpleexpand.tcl.

Unicode Support

In Xapian 1.0.0 and later, the Xapian::Stem, Xapian::QueryParser, and
Xapian::TermGenerator classes all assume text is in UTF-8. Tcl8 uses
UTF-8 as its internal representation, except that ASCII nul (character value
0) is represented as the overlong (and thus invalid) UTF-8 sequence
\xc0\x80. We don’t currently convert this to/from
\x00 so you should avoid passing strings containing ASCII nul
between Tcl and Xapian.

Destructors

To destroy an object obj, you need to use one of
obj -delete or rename obj ""
(either should work, but see below).

SWIG’s Tcl wrapping doesn’t handle an object returned by a factory function
correctly. This only matters for the Xapian::WritableDatabase class, and we
avoid wrapping the problematic Xapian::Chert::open factory function to
avoid setting a trap for the unwary.
You can just use a Xapian::WritableDatabase constructor
instead (and specify a backend by passing $::xapian::DB_BACKEND_GLASS or
similar in the flags, or setting XAPIAN_PREFER_GLASS in the environment).

As of Xapian 1.1.0, you can explicitly close the database, so the lack
of a call to the destructor isn’t an issue:

xapian::WritableDatabase xapiandb testdir $::xapian::DB_CREATE_OR_OVERWRITE
xapian_db close

If you want compatibility with Xapian 1.0.x, then
Michael Schlenker reports that this form works (i.e. the destructor gets
called):

xapian::WritableDatabase xapiandb testdir $::xapian::DB_CREATE_OR_OVERWRITE
rename xapiandb ""

However, apparently none of these forms work:

xapian::WritableDatabase xapiandb testdir $::xapian::DB_CREATE_OR_OVERWRITE
set db xapiandb
$db -delete

set db [xapian::WritableDatabase xapiandb testdir $::xapian::DB_CREATE_OR_OVERWRITE]
$db -delete

set db [xapian::WritableDatabase xapiandb testdir $::xapian::DB_CREATE_OR_OVERWRITE]
rename $db ""

Exceptions

Xapian::Error exceptions can be handled in Tcl like so:

if [catch {
 # Code which might throw an exception.
 } msg] {
 # Code to handle exceptions.
 # $errorCode is "XAPIAN <error_class>" (e.g. "XAPIAN DocNotFoundError".)
 # $msg is the result of calling get_msg() on the Xapian::Error object.
}

Iterators

All iterators support next and equals methods
to move through and test iterators (as for all language bindings).
MSetIterator and ESetIterator also support prev.

Iterator dereferencing

C++ iterators are often dereferenced to get information, eg
(*it). With Tcl8 these are all mapped to named methods, as
follows:

Iterator deferencing methods

		Iterator
		Dereferencing method

		PositionIterator
		get_termpos

		PostingIterator
		get_docid

		TermIterator
		get_term

		ValueIterator
		get_value

		MSetIterator
		get_docid

		ESetIterator
		get_term

Other methods, such as MSetIterator::get_document, are
available under the same names.

MSet

MSet objects have some additional methods to simplify access (these
work using the C++ array dereferencing):

MSet additional methods

		Method name
		Explanation

		mset get_hit index
		returns MSetIterator at index

		mset get_document_percentage index
		mset convert_to_percent [mset get_hit index]

		mset get_document index
		[mset get_hit index] get_document

		mset get_docid index
		[mset get_hit index] get_docid

Non-Class Functions

The C++ API contains a few non-class functions (the Database factory
functions, and some functions reporting version information), which are
wrapped like so for Tcl:

		Xapian::version_string() is wrapped as xapian::version_string

		Xapian::major_version() is wrapped as xapian::major_version

		Xapian::minor_version() is wrapped as xapian::minor_version

		Xapian::revision() is wrapped as xapian::revision

		Xapian::Auto::open_stub() is wrapped as xapian::open_stub

		Xapian::Chert::open() is wrapped as xapian::chert_open (but note that the WritableDatabase version isn’t wrapped - see the ‘Destructors’ section above for an explanation - and this function is deprecated anyway).

		Xapian::InMemory::open() is wrapped as xapian::inmemory_open

		Xapian::Remote::open() is wrapped as xapian::remote_open (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

		Xapian::Remote::open_writable() is wrapped as xapian::remote_open_writable (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

Constants

For Tcl, constants are wrapped as $xapian::CONSTANT_NAME
or $xapian::ClassName_CONSTANT_NAME.
So Xapian::DB_CREATE_OR_OPEN is available as
$xapian::DB_CREATE_OR_OPEN, Xapian::Query::OP_OR is
available as $xapian::Query_OP_OR, and so on.

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter. In Tcl, this is wrapped to accept a Tcl list
to give the terms/queries, and you can specify
a mixture of terms and queries if you wish. For example:

set terms [list "hello" "world"]
xapian::Query subq $xapian::Query_OP_AND $terms
xapian::Query bar_term "bar" 2
xapian::Query query $xapian::Query_OP_AND [list subq "foo" bar_term]

MatchAll and MatchNothing

As of Xapian 1.1.1, these are wrapped for Tcl as
$xapian::Query_MatchAll and
$xapian::Query_MatchNothing.

Enquire

There is an additional method get_matching_terms which takes
an MSetIterator and returns a list of terms in the current query which
match the document given by that iterator. You may find this
more convenient than using the TermIterator directly.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/collapsing.html

 Navigation

 		
 index

 		Xapian docs documentation »

Collapsing of Search Results

Table of contents

		Collapsing of Search Results
		Introduction

		Performance

		API

		Statistics

		Examples
		Duplicate Elimination

		Restricting the Number of Matches per Source

Introduction

Xapian provides the ability to eliminate “duplicate” documents from the MSet.
This feature is known as “collapsing” - think of a pile of duplicates being
collapsed down to leave a single result (or a small number of results).

The collapsing always removes the worse ranked documents (if ranking by
relevance, those with the lowest weight; if ranking by sorting, those which
sort lowest).

Whether two documents count as duplicates of one another is determined by their
“collapse key”. If a document has an empty collapse key, it will never be
collapsed, but otherwise documents with the same collapse key will be collapsed
together.

Currently the collapse key is taken from a value slot you specify (via the
method Enquire::set_collapse_key()), but in the future you should be able
to build collapse keys dynamically using Xapian::KeyMaker as you already
can for sort keys.

Performance

The collapsing is performed during the match process, so is pretty efficient.
In particular, this approach is much better than generating a larger MSet and
post-processing it.

However, if the collapsing eliminates a lot of documents then the collapsed
search will typically take rather longer than the uncollapsed search because
the matcher has to consider many more potential matches.

API

To enable collapsing, call the method Enquire::set_collapse_key with the
value slot, and optionally the number of matches with each collapse key to keep
(this defaults to 1 if not specified), e.g.:

// Collapse on value slot 4, leaving at most 2 documents with each
// collapse key.
enquire.set_collapse_key(4, 2);

Once you have the MSet object, you can read the collapse key for each
match with MSetIterator::get_collapse_key(), and also the “collapse count”
with MSetIterator::get_collapse_count(). The latter is a lower bound on
the number of documents with the same collapse key which collapsing eliminated.

Beware that if you have a percentage cutoff active, then the collapse count
will (at least in the current implementation) will always be either 0 or 1
as it is hard to tell if the collapsed documents would have failed the cutoff.

Statistics

As well as the usual bounds and estimate of the “full” MSet size (i.e. the
size if you’d asked for enough matches to get them all), the matcher also
calculates bounds and an estimate for what the MSet size would be if collapsing
had not been used - you can obtain these using these methods:

Xapian::doccount get_uncollapsed_matches_lower_bound() const;
Xapian::doccount get_uncollapsed_matches_estimated() const;
Xapian::doccount get_uncollapsed_matches_upper_bound() const;

Examples

Here are some ways this feature can be used:

Duplicate Elimination

If your document collection includes some identical documents, it’s unhelpful
when these show up in the search results. Sometimes it is possible to
eliminate them at index time, but this isn’t always feasible.

If you store a checksum (e.g. SHA1 or MD5) of the document contents and store
this in a document value then you can collapse on this to eliminate such
duplicates.

If the document files will be identical, then the checksum can just be of the
file, but sometimes it makes sense to extract and normalise the text, then
calculate the checksum of this.

Restricting the Number of Matches per Source

It’s sometimes desirable to avoid one source dominating the results. For
example, in a web search application, you might want to show at most three
matches from any website, in which case you could collapse on the hostname
with collapse_max set to 3.

When displaying the results, you can use the collapse count of each match
to inform the user that there are at least that many other matches for this
host (unless you are also using a percentage cutoff - see above). If it is
non-zero it means you can usefully provide a “show all documents for host
<get_collapse_key()>” button which reruns the search without collapsing and
with a boolean filter for a prefixed term containing the hostname (though note
that this may not always give a button when there are collapsed documents
because the collapse count is a lower bound and may be zero when there are
collapsed matches with the same key).

This approach isn’t just useful for web search - the “source” can be defined
usefully in many applications. For example, a forum or mailing list search
could collapse on a topic or thread identifier, an index at the chapter level
could collapse on a book identifier (such as an ISBN), etc.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/ruby/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Ruby bindings for Xapian

The Ruby bindings for Xapian are packaged in the xapian module.
Ruby strings and arrays are converted automatically in the bindings, so
generally they should just work naturally.

The examples subdirectory contains examples showing how to use the
Ruby bindings based on the simple examples from xapian-examples:
simpleindex.rb,
simplesearch.rb,
simpleexpand.rb.
There’s also
simplematchdecider.rb
which shows how to define a MatchDecider in Ruby.

Usage

To use the bindings, you need to use require 'xapian'
in your ruby program.

Most standard Xapian methods are available directly
to your Ruby program. Names have been altered to conform to the
standard Ruby naming conventions (i.e. get_foo() in C++ becomes foo()
in Ruby; set_foo() becomes foo=().) C++ ‘operator()’ methods are
renamed to ‘call’ methods in Ruby.

The C++ methods are not yet documented in the RDocs.
In the meantime, refer to the
C++ API documentation [http://xapian.org/docs/apidoc/html/annotated.html]
for information on how to use the various methods. Most are
available directly in the Ruby version. The RDocs currently provide information
only on methods that are unique to the Ruby version.

The dangerous/non-Rubish methods from the C++ API have been renamed to
start with underscores (‘_’) in the Ruby bindings. You can see them in
use in xapian.rb. It is strongly recommended that you do not call any
method that starts with _ directly in your code, but instead use the
wrappers defined in xapian.rb. Improper use of an _ method can cause
the Ruby process to segfault.

Unicode Support

In Xapian 1.0.0 and later, the Xapian::Stem, Xapian::QueryParser, and
Xapian::TermGenerator classes all assume text is in UTF-8. If you want
to index strings in a different encoding, use the Ruby
Iconv Class [http://www.ruby-doc.org/stdlib/libdoc/iconv/rdoc/index.html]
to convert them to UTF-8 before passing them to Xapian, and
when reading values back from Xapian.

Iterators

One important difference from the C++ API is that *Iterator
classes should not be used from Ruby, as they fit awkwardly into
standard Ruby iteration paradigms, and as many of them cause segfaults
if used improperly. They have all been wrapped with appropriate
methods that simply return the *Iterator objects in an Array, so that
you can use ‘each’ to iterate through them.

mset.matches.each {|match|
 # do something
}

Non-Class Functions

The C++ API contains a few non-class functions (the Database factory
functions, and some functions reporting version information), which are
wrapped like so for Ruby:

		Xapian::version_string() is wrapped as Xapian::version_string()

		Xapian::major_version() is wrapped as Xapian::major_version()

		Xapian::minor_version() is wrapped as Xapian::minor_version()

		Xapian::revision() is wrapped as Xapian::revision()

		Xapian::Auto::open_stub() is wrapped as Xapian::open_stub()

		Xapian::Chert::open() is wrapped as Xapian::chert_open() (now deprecated)

		Xapian::InMemory::open() is wrapped as Xapian::inmemory_open()

		Xapian::Remote::open() is wrapped as Xapian::remote_open() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

		Xapian::Remote::open_writable() is wrapped as Xapian::remote_open_writable() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter. In Ruby, this is wrapped to accept a Ruby array containing
terms, or queries, or even a mixture of terms and queries. For example:

subq = Xapian::Query.new(Xapian::Query::OP_AND, "hello", "world")
q = Xapian::Query.new(Xapian::Query::OP_AND, [subq, "foo", Xapian::Query.new("bar", 2)])

MatchAll and MatchNothing

In Xapian 1.3.0 and later, these are wrapped as class constants
Xapian::Query::MatchAll and Xapian::Query::MatchNothing.

If you want to be compatible with earlier versions, you can continue to use
Xapian::Query.new("") for MatchAll and
Xapian::Query.new() for MatchNothing.

MatchDecider

Custom MatchDeciders can be created in Ruby; simply subclass
Xapian::MatchDecider, ensure you call the superclass constructor, and define a
__call__ method that will do the work. The simplest example (which does nothing
useful) would be as follows:

class MyMatchDecider < Xapian\::MatchDecider
 def __call__(doc):
 return true
 end
end

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/intro_ir.html

 Navigation

 		
 index

 		Xapian docs documentation »

Theoretical Background

This document aims to provide some theoretical background to Xapian.

Documents and terms

In Information Retrieval (IR), the items we are trying to retrieve are
called documents, and each document is described by a collection of
terms. These two words, document and term, are now traditional
in the vocabulary of IR, and reflect its Library Science origins.
Usually a document is thought of as a piece of text, most likely in a
machine readable form, and a term as a word or phrase which helps to
describe the document, and which may indeed occur one or more times in
the document. So a document might be about dental care, and could be
described by corresponding terms tooth, teeth, toothbrush,
decay, cavity, plaque, diet and so on.

More generally a document can be anything we want to retrieve, and a
term any feature that helps describe the documents. So the documents
could be a collection of fossils held in a big museum collection, and
the terms could be morphological characteristics of the fossils. Or the
documents could be tunes, and the terms could then be phrases of notes
that occur in the tunes.

If, in an IR system, a document, D, is described by a term, t, t is said
to index D, and we can write,

In fact an IR system consists of a set of documents, , , ...,
a set of terms , , ..., and set of relationships,

i.e. instances of terms indexing documents. A single instance of a
particular term indexing a particular document is called a posting.

For a document, D, there is a list of terms which index it. This is
called the term list of D.

For a term, t, there is a list of documents which it indexes. This is
called the posting list of t. (Document list would be more
consistent, but sounds a little too vague for this very important
concept.)

At a simple level a computerised IR system puts the terms in an index
file. A term can be efficiently looked up and its posting list found. In
the posting list, each document is represented by a short identifier. To
over-simplify a little, a posting list can be thought of as a list of
numbers (document ids), and term list as a list of strings (the terms).
Some systems represent each term by a number internally, so the term
list is then also a list of numbers. Xapian doesn’t - it uses the terms
themselves, and uses prefix compression to store them compactly.

The terms needn’t be (and often aren’t) just the words from the
document. Usually they are converted to lower case, and often a stemming
algorithm is applied, so a single term connect might derive from a
number of words, connect, connects, connection, connected
and so on. A single word might also give rise to more than one term, for
example you might index both stemmed and unstemmed forms of some or all
terms. Or a stemming algorithm could conceivably produce more than one
stem in some cases (this isn’t the case for any of the stemming
algorithms Xapian currently supports, but consider the Double
Metaphone [http://en.wikipedia.org/wiki/Double_Metaphone] phonetic
algorithm which can produce two codes from a single input).

Xapian’s context within IR

In the beginning IR was dominated by Boolean retrieval, described in the
next section. This could be called the antediluvian period, or
generation zero. The first generation of IR research dates from the
early sixties, and was dominated by model building, experimentation, and
heuristics. The big names were Gerard
Salton [http://en.wikipedia.org/wiki/Gerard_Salton] and Karen Sparck
Jones [http://en.wikipedia.org/wiki/Karen_Sparck_Jones]. The second
period, which began in the mid-seventies, saw a big shift towards
mathematics, and a rise of the IR model based upon probability theory -
probabilistic IR. The big name here was, and continues to be, Stephen
Robertson [http://www.soi.city.ac.uk/~ser/homepage.html]. More
recently Keith van
Rijsbergen [http://en.wikipedia.org/wiki/C._J._van_Rijsbergen] has led
a group that has developed underlying logical models of IR, but
interesting as this new work is, it has not as yet led to results that
offer improvements for the IR system builder.

Xapian was built as a system for efficiently implementing the
probabilistic IR model (though this doesn’t mean it is limited to only
implementing this model - other models can be implemented providing they
can be expressed in a suitable way). Xapian tries to implement the
probabilistic model faithfully, though in some places it can be told to
use short-cuts for efficiency.

The model has two striking advantages:

		It leads to systems that give good retrieval performance. As the
model has developed over the last 25 years, this has proved so
consistently true that one is led to suspect that the probability
theory model is, in some sense, the “correct” model for IR. The IR
process would appear to function as the model suggests.

		As new problems come up in IR, the probabilistic model can usually
suggest a solution. This makes it a very practical mental tool for
cutting through the jungle of possibilities when designing IR
software.

In simple cases the model reduces to simple formulae in general use, so
don’t be alarmed by the apparent complexity of the equations below. We
need them for a full understanding of the general case.

Boolean retrieval

A Boolean construct of terms retrieves a corresponding set of documents.
So, if:

 indexes documents 1 2 3 5 8

 indexes documents 2 3 6

then

 AND retrieves 2 3

 OR retrieves 1 2 3 5 6 8

 AND_NOT retrieves 1 5 8

 AND_NOT retrieves 6

The posting list of a term is a set of documents. IR becomes a matter of
constructing other sets by doing unions, intersections and differences
on posting lists.

For example, in an IR system of works of literature, a Boolean query

(lang:en OR lang:fr OR lang:de) AND (type:novel OR type:play) AND century:19

might be used to retrieve all English, French or German novels or plays
of the 19th century.

Boolean retrieval is often useful, but is rather inadequate on its own
as a general IR tool. Results aren’t ordered by any measure of how
“good” they might be, and users require training to make effective use
of such a system. Despite this, purely boolean IR systems continue to
survive.

By default, Xapian uses probabilistic ranking to order retrieved
documents while allowing Boolean expressions of arbitrary complexity
(some boolean IR systems are restricted to queries in normal form) to
limit those documents retrieved, which provides the benefits of both
approaches. Pure Boolean retrieval is also supported (select the
BoolWeight weighting
scheme using enquire.set_weighting_scheme(Xapian::BoolWeight());).

Relevance and the idea of a query

Relevance is a central concept to the probabilistic model. Whole
academic papers have been devoted to discussing the nature of relevance
but essentially a document is relevant if it was what the user really
wanted! Retrieval is rarely perfect, so among documents retrieved there
will be non-relevant ones; among those not retrieved, relevant ones.

Relevance is modelled as a black or white attribute. There are no
degrees of relevance, a document either is, or is not, relevant. In the
probabilistic model there is however a probability of relevance, and
documents of low probability of relevance in the model generally
correspond to documents that, in practice, one would describe as having
low relevance.

What the user actually wants has to be expressed in some form, and the
expression of the user’s need is the query. In the probabilistic model
the query is, usually, a list of terms, but that is the end process of a
chain of events. The user has a need; this is expressed in ordinary
language; this is then turned into a written form that the user judges
will yield good results in an IR system, and the IR system then turns
this form into a set, Q, of terms for processing the query. Relevance
must be judged against the user’s original need, not against a later
interpretation of what Q, the set of terms, ought to mean.

Below, a query is taken to be just a set of terms, but it is important
to realise that this is a simplification. Each link in the chain that
takes us from the information need (“what the user is looking for”) to
the abstraction in Q is liable to error, and these errors compound to
affect IR performance. In fact the performance of IR systems as a whole
is much worse than most people generally imagine.

Evaluating IR performance

It is possible to set up a test to evaluate an IR system. Suppose Q is
a query, and out of the complete collection of documents in the IR
system, a set of documents R of size R are relevant to the query. So
if a document is in R it is relevant, and if not in R it is
non-relevant. Suppose the IR system is able to give us back K documents,
among which r are relevant. Precision and recall are defined as
being,

Precision is the density of relevant documents among those retrieved.
Recall is the proportion of relevant documents retrieved. In most IR
systems K is a parameter that can be varied, and what you find is that
when K is low you get high precision at the expense of low recall, and
when K is high you get high recall at the expense of low precision.

The ideal value of K will depend on the use of the system. For example,
if a user wants the answer to a simple question and the system contains
many documents which would answer it, a low value of K will be best to
give a small number of relevant results. But in a system indexing legal
cases, users will often wish to make sure no potentially relevant case
is missed even if that requires they check more non-relevant cases, so a
high value of K will be best.

Retrieval effectiveness is often shown as a graph of precision against
recall average over a number of queries, and plotted for different
values of K. Such curves typically have a shape similar to a hyperbola
(y=1/x).

A collection like this, consisting of a set of documents, a set of
queries, and for each query, a complete set of relevance assessments, is
called a test collection. With a test collection you can test out
different IR ideas, and see how well one performs against another. The
controversial part of establishing any test collection is the procedure
employed for determining the sets , of relevance
assessments. Subjectivity of judgement comes in here, and people will
differ about whether a particular document is relevant to a particular
query. Even so, the averaging across queries reduces the errors that may
occasionally arise through faulty relevance judgements, and averaging
important tests across a number of test collections reduces the effects
caused by accidental features of individual collections, and the results
obtained by these tests in modern research are generally accepted as
trustworthy. Nowadays such research with test collections is organised
from TREC [http://trec.nist.gov/].

Probabilistic term weights

In this section we will try to present some of the thinking behind the
formulae. This is really to give a feel for where the probabilistic
model comes from. You may want to skim through this section if you’re
not too interested.

Suppose we have an IR system with a total of N documents. And suppose
Q is a query in this IR system, made up of terms ,
 There is a set, R, of documents
relevant to the query.

In 1976, Stephen Robertson derived a formula which gives an ideal
numeric weight to a term t of Q. Just how this weight gets used we will
see below, but essentially a high weight means an important term and a
low weight means an unimportant term. The formula is,

(The base of the logarithm doesn’t matter, but we can suppose it is e.)
p is the probability that t indexes a relevant document, and q the
probability that t indexes a non-relevant document. And of course, 1 - p
is the probability that t does not index a relevant document, and 1 - q
the probability that t does not index a non-relevant document. More
mathematically,

Suppose that t indexes n of the N documents in the IR system. As before,
we suppose also that there are R documents in R, and that there are r
documents in R which are indexed by t.

p is easily estimated by r/R, the ratio of the number of relevant
documents indexed by t to the total number of relevant documents.

The total number of non-relevant documents is N - R, and the number of
those indexed by t is n - r, so we can estimate q as (n - r)/(N - R).
This gives us the estimates,

and so substituting in the formula for w(t) we get the estimate,

Unfortunately, this formula is subject to violent behaviour when, say, n
= r (infinity) or r = 0 (minus infinity), and so Robertson suggests the
modified form

with the reassurance that this has “some theoretical justification”.
This is the form of the term weighting formula used in Xapian’s
BM25Weight.

Note that n is dependent on the term, t, and R on the query, Q, while
r depends both on t and Q. N is constant, at least until the IR system
changes.

At first sight this formula may appear to be quite useless. After all,
R is what we are trying to find. We can’t evaluate w(t) until we have
R, and if we have R the retrieval process is over, and term weights
are no longer of any interest to us.

But the point is we can estimate p and q from a subset of R. As soon
as some records are found relevant by the user they can be used as a
working set for R from which the weights w(t) can be derived, and
these new weights can be used to improve the processing of the query.

In fact in the Xapian software R tends to mean not the complete set of
relevant documents, which indeed can rarely be discovered, but a small
set of documents which have been judged as relevant.

Suppose we have no documents marked as relevant. Then R = r = 0, and
w(t) becomes,

This is approximately log((N - n)/n). Or log(N/n), since n is usually
small compared with N. This is called inverse logarithmic weighting, and
has been used in IR for many decades, quite independently of the
probabilistic theory which underpins it. Weights of this form are in
fact the starting point in Xapian when no relevance information is
present.

The number n incidentally is often called the frequency of a term. We
prefer the phrase term frequency, to better distinguish it from wdf
and wqf introduced below.

In extreme cases w(t) can be negative. In Xapian, negative values are
disallowed, and simply replaced by a small positive value.

wdp, wdf, ndl and wqf

Before we see how the weights are used there are a few more ideas to
introduce.

As mentioned before, a term t is said to index a document D, or .
We have emphasised that D may not be a piece of text in machine-readable
form, and that, even when it is, t may not actually occur in the text of
D. Nevertheless, it will often be the case that D is made up of a list
of words,

 ...

and that many, if not all, of the terms which index D derive from these
words (for example, the terms are often lower-cased and stemmed forms of
these words).

If a term derives from words and in the indexing
process, we can say that the term “occurs” in D at positions 9, 38, 97 and
221, and so for each term a document may have a vector of positional
information. These are the within-document positions of t, or the wdp
information of t.

The within-document frequency, or wdf, of a term t in D is the
number of times it is pulled out of D in the indexing process. Usually
this is the size of the wdp vector, but in Xapian it can exceed it,
since we can apply extra wdf to some parts of the document text. For
example, often this is done for the document title and abstract to
attach extra importance to their contents compared to the rest of the
document text.

There are various ways in which we might measure the length of a
document, but the easiest is to suppose it is made up of m words,
 to , and to define its length as m.

The normalised document length, or ndl, is then m divided by the
average length of the documents in the IR system. So the average length
document has ndl equal to 1, short documents are less than 1, long
documents greater than 1. We have found that very small ndl values
create problems, so Xapian actually allows for a non-zero minimum value
for the ndl.

In the probabilistic model the query, Q, is itself very much like
another document. Frequently indeed Q will be created from a document,
either one already in the IR system, or by an indexing process very
similar to the one used to add documents into the whole IR system. This
corresponds to a user saying “give me other documents like this one”.
One can therefore attach a similar meaning to within-query position
information, within-query frequency, and normalised query length, or
wqp, wqf and nql. Xapian does not currently use the concept of wqp.

Using the weights. The MSet

Now to pull everything together. From the probabilistic term weights we
can assign a weight to any document, d, as follows,

The sum extends over the terms of Q which index d. is
the wdf of t in d, is the ndl of d, and k is some suitably
chosen constant.

The factor is actually redundant, but helps with the interpretation
of the equation. In Xapian, this weighting scheme is implemented by the
Xapian::TradWeight class
and the factor is ignored.

If is set to zero the factor before is 1, and the wdfs are
ignored. As k tends to infinity, the factor becomes
/, and the wdfs take on their greatest
importance. Intermediate values scale the wdf contribution between these
extremes. The best actually depends on the characteristics of the IR
system as a whole, and unfortunately no rule can be given for choosing
it. By default, Xapian sets to 1 which should give reasonable results
for most systems. is merely tweaked a bit by the wdf values, and
users observe a simple pattern of retrieval. It is possible to tune to
provide optimal results for a specific system.

Any in the IR system has a value , but, if no term of the query
indexes , will be zero. In practice only documents for which
 will be of interest, and these are the documents indexed by at least
one term of Q. If we now take these documents and arrange them by
decreasing value, we get a ranked list called the match set, or
MSet, of document and weight pairs:

where if j > i.

And according to the probabilistic model, the documents
are ranked by decreasing order of probability of relevance. So has highest
probability of being relevant, then and so on.

Xapian creates the MSet from the posting lists of the terms of the
query. This is the central operation of any IR system, and will be
familiar to anyone who has used one of the Internet’s major search
engines, where the query is what you type in the query box, and the
resulting hit list corresponds to the top few items of the MSet.

The cutoff point, K, is chosen when the MSet is created. The candidates
for inclusion in the MSet are all documents indexed by at least one term
of Q, and their number will usually exceed the choice of K (K is
typically set to be 1000 or less). So the MSet is actually the best K
documents found in the match process.

A modification of this weighting scheme can be employed that takes into
account the query itself:

where is the wqf of t in Q, is the nql, or normalised
query length, and is a further constant. In computing
across the document space, this extra factor may be viewed as just a
modification to the basic term weights, . Like and ,
we will need to make an inspired guess for . In fact the choices for
 and will depend on the broader context of the use of
this formula, and more advice will be given as occasion arises.

Xapian’s default weighting scheme is a generalised form of this
weighting scheme modification, known as BM25. In BM25,
is always set to 1.

Using the weights: the ESet

But as well as ranking documents, Xapian can rank terms, and this is
most important. The higher up the ranking the term is, the more likely
it is to act as a good differentiator between relevant and non-relevant
documents. It is therefore a candidate for adding back into the query.
Terms from this list can therefore be used to expand the size of the
query, after which the query can be re-run to get a better MSet. Because
this list of terms is mainly used for query expansion, it is called the
expand set or ESet.

The term expansion weighting formula is as follows,

in other words we multiply the term weight by the number of relevant
documents that have been indexed by the term.

The ESet then has this form,

where if j > i.

Since the main function of the ESet is to find new terms to be added to
Q, we usually omit from it terms already in Q.

The weight is applicable to any term in the IR system, but has a
value zero when t does not index a relevant document. The ESet is
therefore confined to be a ranking of the best K terms which index
relevant documents.

This simple form of is traditional in the probabilistic model, but
seems less than optimal because it does not take into account wdf
information. One can if fact try to generalise it to:

 is again a constant, but it does not need to have the same value as
the used in the probabilistic term weights above. In Xapian,
defaults to 1.0 for ESet generation.

This reduces to when . Certainly this form can be
recommended in the very common case where , that is, we have a
single document marked relevant.

The progress of a query

Below we describe the general case of the IR model supported, including
use of a relevance set (RSet), query expansion,
improved term weights and reranking. You don’t have to use any of these
for Xapian to be useful, but they are available should you need them.

The user enters a query. This is parsed into a form the IR system
understands, and run by the IR system, which returns two lists, a list
of captions, derived from the MSet, and a list of terms, from the ESet.
If the RSet is empty, the first few documents of the MSet can be used as
a stand-in - after all, they have a good chance of being relevant! You
can read a document by clicking on the caption. (We assume the usual
screen/mouse environment.) But you can also mark a document as relevant
(change R) or cause a term to be added from the ESet to the query
(change Q). As soon as any change is made to the query environment the
query can be rerun, although you might have a front-end where nothing
happens until you click on some “Run Query” button.

In any case rerunning the query leads to a new MSet and ESet, and so to
a new display. The IR process is then an iterative one. You can delete
terms from the query or add them in; mark or unmark documents as being
relevant. Eventually you converge on the answer to the query, or at
least, the best answer the IR system can give you.

Further Reading

If you want to find out more, then “Simple, proven approaches to text
retrieval” [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.8337]
is a worthwhile read. It’s a good introduction to Probabilistic
Information retrieval, which is basically what Xapian provides.

There are also several good books on the subject of Information
retrieval.

		“Information Retrieval” by C. J. van Rijsbergen is well worth
reading. It’s out of print, but is available for free from the
author’s website [http://www.dcs.gla.ac.uk/Keith/Preface.html] (in
HTML or PDF).

		“Readings in Information Retrieval” (published by Morgan Kaufmann,
edited by Karen Sparck Jones and Peter Willett) is a collection of
published papers covering many aspects of the subject.

		“Managing Gigabytes” (also published by Morgan Kaufmann, written by
Ian H. Witten, Alistair Moffat and Timothy C. Bell) describes
information retrieval and compression techniques.

		“Modern Information Retrieval” (published by Addison Wesley,
written by Ricardo Baeza-Yates and Berthier Ribeiro-Neto) gives a
good overview of the field. It was published more recently than the
books above, and so covers some more recent developments.

		“Introduction to Information Retrieval” (published by Cambridge
University Press, written by Christopher D. Manning, Prabhakar
Raghavan and Hinrich Schütze) looks to be a good introductory work
(we’ve not read it in detail yet). As well as the print version,
there’s an online version on the book’s companion
website [http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html].

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python/docs/examples.html

 Navigation

 		
 index

 		Xapian docs documentation »

Examples

simplesearch.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

		#!/usr/bin/env python
#
Simple command-line search script.
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2007,2009 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian

We require at least two command line arguments.
if len(sys.argv) < 3:
 print >> sys.stderr, "Usage: %s PATH_TO_DATABASE QUERY" % sys.argv[0]
 sys.exit(1)

try:
 # Open the database for searching.
 database = xapian.Database(sys.argv[1])

 # Start an enquire session.
 enquire = xapian.Enquire(database)

 # Combine the rest of the command line arguments with spaces between
 # them, so that simple queries don't have to be quoted at the shell
 # level.
 query_string = str.join(' ', sys.argv[2:])

 # Parse the query string to produce a Xapian::Query object.
 qp = xapian.QueryParser()
 stemmer = xapian.Stem("english")
 qp.set_stemmer(stemmer)
 qp.set_database(database)
 qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
 query = qp.parse_query(query_string)
 print "Parsed query is: %s" % str(query)

 # Find the top 10 results for the query.
 enquire.set_query(query)
 matches = enquire.get_mset(0, 10)

 # Display the results.
 print "%i results found." % matches.get_matches_estimated()
 print "Results 1-%i:" % matches.size()

 for m in matches:
 print "%i: %i%% docid=%i [%s]" % (m.rank + 1, m.percent, m.docid, m.document.get_data())

except Exception, e:
 print >> sys.stderr, "Exception: %s" % str(e)
 sys.exit(1)

simpleindex.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

		#!/usr/bin/env python
#
Index each paragraph of a text file as a Xapian document.
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2007 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian
import string

if len(sys.argv) != 2:
 print >> sys.stderr, "Usage: %s PATH_TO_DATABASE" % sys.argv[0]
 sys.exit(1)

try:
 # Open the database for update, creating a new database if necessary.
 database = xapian.WritableDatabase(sys.argv[1], xapian.DB_CREATE_OR_OPEN)

 indexer = xapian.TermGenerator()
 stemmer = xapian.Stem("english")
 indexer.set_stemmer(stemmer)

 para = ''
 try:
 for line in sys.stdin:
 line = line.strip()
 if line == '':
 if para != '':
 # We've reached the end of a paragraph, so index it.
 doc = xapian.Document()
 doc.set_data(para)

 indexer.set_document(doc)
 indexer.index_text(para)

 # Add the document to the database.
 database.add_document(doc)
 para = ''
 else:
 if para != '':
 para += ' '
 para += line
 except StopIteration:
 pass

except Exception, e:
 print >> sys.stderr, "Exception: %s" % str(e)
 sys.exit(1)

simpleexpand.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

		#!/usr/bin/env python
#
Simple example script demonstrating query expansion.
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2006,2007,2012,2013 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian

We require at least two command line arguments.
if len(sys.argv) < 3:
 print >> sys.stderr, "Usage: %s PATH_TO_DATABASE QUERY [-- [DOCID...]]" % sys.argv[0]
 sys.exit(1)

try:
 # Open the database for searching.
 database = xapian.Database(sys.argv[1])

 # Start an enquire session.
 enquire = xapian.Enquire(database)

 # Combine command line arguments up to "--" with spaces between
 # them, so that simple queries don't have to be quoted at the shell
 # level.
 query_string = sys.argv[2]
 index = 3
 while index < len(sys.argv):
 arg = sys.argv[index]
 index += 1
 if arg == '--':
 # Passed marker, move to parsing relevant docids.
 break
 query_string += ' '
 query_string += arg

 # Create an RSet with the listed docids in.
 reldocs = xapian.RSet()
 for index in xrange(index, len(sys.argv)):
 reldocs.add_document(int(sys.argv[index]))

 # Parse the query string to produce a Xapian::Query object.
 qp = xapian.QueryParser()
 stemmer = xapian.Stem("english")
 qp.set_stemmer(stemmer)
 qp.set_database(database)
 qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
 query = qp.parse_query(query_string)

 if not query.empty():
 print "Parsed query is: %s" % str(query)

 # Find the top 10 results for the query.
 enquire.set_query(query)
 matches = enquire.get_mset(0, 10, reldocs)

 # Display the results.
 print "%i results found." % matches.get_matches_estimated()
 print "Results 1-%i:" % matches.size()

 for m in matches:
 print "%i: %i%% docid=%i [%s]" % (m.rank + 1, m.percent, m.docid, m.document.get_data())

 # Put the top 5 (at most) docs into the rset if rset is empty
 if reldocs.empty():
 rel_count = 0
 for m in matches:
 reldocs.add_document(m.docid)
 rel_count += 1
 if rel_count == 5:
 break

 # Get the suggested expand terms
 eterms = enquire.get_eset(10, reldocs)
 print "%i suggested additional terms" % eterms.size()
 for k in eterms:
 print "%s: %f" % (k.term, k.weight)

except Exception, e:
 print >> sys.stderr, "Exception: %s" % str(e)
 sys.exit(1)

simplematchdecider.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

		#!/usr/bin/env python
#
Simple command-line match decider example
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2007,2009 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian

This example runs a query like simplesearch does, but uses a MatchDecider
(mymatchdecider) to discard any document for which value 0 is equal to
the string passed as the second command line argument.

if len(sys.argv) < 4:
 print >> sys.stderr, "Usage: %s PATH_TO_DATABASE AVOID_VALUE QUERY" % sys.argv[0]
 sys.exit(1)

class mymatchdecider(xapian.MatchDecider):
 def __init__(self, avoidvalue):
 xapian.MatchDecider.__init__(self)
 self.avoidvalue = avoidvalue

 def __call__(self, doc):
 return doc.get_value(0) != self.avoidvalue

try:
 # Open the database for searching.
 database = xapian.Database(sys.argv[1])

 # Start an enquire session.
 enquire = xapian.Enquire(database)

 # Combine the rest of the command line arguments with spaces between
 # them, so that simple queries don't have to be quoted at the shell
 # level.
 avoid_value = sys.argv[2]
 query_string = str.join(' ', sys.argv[3:])

 # Parse the query string to produce a Xapian::Query object.
 qp = xapian.QueryParser()
 stemmer = xapian.Stem("english")
 qp.set_stemmer(stemmer)
 qp.set_database(database)
 qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
 query = qp.parse_query(query_string)
 print "Parsed query is: %s" % str(query)

 # Find the top 10 results for the query.
 enquire.set_query(query)
 mdecider = mymatchdecider(avoid_value)
 matches = enquire.get_mset(0, 10, None, mdecider)

 # Display the results.
 print "%i results found." % matches.get_matches_estimated()
 print "Results 1-%i:" % matches.size()

 for m in matches:
 print "%i: %i%% docid=%i [%s]" % (m.rank + 1, m.percent, m.docid, m.document.get_data())

except Exception, e:
 print >> sys.stderr, "Exception: %s" % str(e)
 sys.exit(1)

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Welcome to Xapian Python Bindings’s documentation!

Contents:

		Introduction
		Exceptions

		Unicode

		Iterators

		Non-Pythonic Iterators

		MSet

		ESet

		Non-Class Functions

		Query

		MatchDecider

		ValueRangeProcessors

		Apache and mod_python/mod_wsgi

		Examples
		simplesearch.py

		simpleindex.py

		simpleexpand.py

		simplematchdecider.py

		xapian Package
		xapian Package

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python/docs/introduction.html

 Navigation

 		
 index

 		Xapian docs documentation »

Introduction

The Python bindings for Xapian are packaged in the xapian module,
and largely follow the C++ API, with the following differences and
additions. Python strings and lists, etc., are converted automatically
in the bindings, so generally it should just work as expected.

The examples subdirectory contains examples showing how to use the
Python bindings based on the simple examples from xapian-examples:
simpleindex.py,
simplesearch.py,
simpleexpand.py,
There’s also
simplematchdecider.py,
which shows how to define a MatchDecider in Python.

The Python bindings come with a test suite, consisting of two test files:
smoketest.py and pythontest.py. These are run by the
“make check” command, or may be run manually. By default, they
will display the names of any tests which failed, and then display a count of
tests which run and which failed. The verbosity may be increased by setting
the “VERBOSE” environment variable: a value of 1 will display
detailed information about failures, and a value of 2 will display further
information about the progress of tests.

Exceptions

Xapian exceptions are translated into Python exceptions with the same names
and inheritance hierarchy as the C++ exception classes. The base class of
all Xapian exceptions is the xapian.Error class, and this in
turn is a child of the standard python exceptions.Exception
class.

This means that programs can trap all xapian exceptions using “except
xapian.Error”, and can trap all exceptions which don’t indicate that
the program should terminate using “except Exception”.

Unicode

The xapian Python bindings accept unicode strings as well as simple strings
(ie, “str” type strings) at all places in the API which accept string data.
Any unicode strings supplied will automatically be translated into UTF-8
simple strings before being passed to the Xapian core. The Xapian core is
largely agnostic about character encoding, but in those places where it does
process data in a character encoding dependent way it assumes that the data
is in UTF-8. The Xapian Python bindings always return string data as simple
strings.

Therefore, in order to avoid issues with character encodings, you should
always pass text data to Xapian as unicode strings, or UTF-8 encoded simple
strings. There is, however, no requirement for simple strings passed into
Xapian to be valid UTF-8 encoded strings, unless they are being passed to a
text processing routine (such as the query parser, or the stemming
algorithms). For example, it is perfectly valid to pass arbitrary binary
data in a simple string to the xapian.Document.set_data()
method.

It is often useful to normalise unicode data before passing it to Xapian -
Xapian currently has no built-in support for normalising unicode
representations of data. The standard python module
“unicodedata” provides support for normalising unicode: you
probably want the “NFKC” normalisation scheme: in other words,
use something like

unicodedata.normalize('NFKC', u'foo')

to normalise the string “foo” before passing it to Xapian.

Iterators

The iterator classes in the Xapian C++ API are wrapped in a “Pythonic” style.
The following are supported (where marked as default iterator, it means
__iter__() does the right
thing so you can for instance use for term in document to
iterate over terms in a Document object):

		Class
		Method
		Equivalent to
		Iterator type

		MSet
		default iterator
		begin()
		MSetIter

		ESet
		default iterator
		begin()
		ESetIter

		Enquire
		matching_terms()
		get_matching_terms_begin()
		TermIter

		Query
		default iterator
		get_terms_begin()
		TermIter

		Database
		allterms() (also as default iterator)
		allterms_begin()
		TermIter

		Database
		postlist(tname)
		postlist_begin(tname)
		PostingIter

		Database
		termlist(docid)
		termlist_begin(docid)
		TermIter

		Database
		positionlist(docid, tname)
		positionlist_begin(docid, tname)
		PositionIter

		Database
		metadata_keys(prefix)
		metadata_keys(prefix)
		TermIter

		Database
		spellings()
		spellings_begin(term)
		TermIter

		Database
		synonyms(term)
		synonyms_begin(term)
		TermIter

		Database
		synonym_keys(prefix)
		synonym_keys_begin(prefix)
		TermIter

		Document
		values()
		values_begin()
		ValueIter

		Document
		termlist() (also as default iterator)
		termlist_begin()
		TermIter

		QueryParser
		stoplist()
		stoplist_begin()
		TermIter

		QueryParser
		unstemlist(tname)
		unstem_begin(tname)
		TermIter

		ValueCountMatchSpy
		values()
		values_begin()
		TermIter

		ValueCountMatchSpy
		top_values()
		top_values_begin()
		TermIter

The pythonic iterators generally return Python objects, with properties
available as attribute values, with lazy evaluation where appropriate. An
exception is the PositionIter object returned by
Database.positionlist, which returns an integer.

The lazy evaluation is mainly transparent, but does become visible in one situation: if you keep an object returned by an iterator, without evaluating its properties to force the lazy evaluation to happen, and then move the iterator forward, the object may no longer be able to efficiently perform the lazy evaluation. In this situation, an exception will be raised indicating that the information requested wasn’t available. This will only happen for a few of the properties - most are either not evaluated lazily (because the underlying Xapian implementation doesn’t evaluate them lazily, so there’s no advantage in lazy evaluation), or can be accessed even after the iterator has moved. The simplest work around is simply to evaluate any properties you wish to use which are affected by this before moving the iterator. The complete set of iterator properties affected by this is:

		Database.allterms (also accessible as Database.__iter__): termfreq

		Database.termlist: termfreq and positer

		Document.termlist (also accessible as Document.__iter__): termfreq and positer

		Database.postlist: positer

In older releases, the pythonic iterators returned lists representing the
appropriate item when their next() method was called. These were
removed in Xapian 1.1.0.

Non-Pythonic Iterators

Before the pythonic iterator wrappers were added, the python bindings provided
thin wrappers around the C++ iterators. However, these iterators don’t behave
like most iterators do in Python, so the pythonic iterators were implemented to
replace them. The non-pythonic iterators were removed in Xapian 1.3.0 -
the documentation below is provided to aid migration away from them.

All non-pythonic iterators support next() and
equals() methods
to move through and test iterators (as for all language bindings).
MSetIterator and ESetIterator also support prev().
Python-wrapped iterators also support direct comparison, so something like:

m=mset.begin()
while m!=mset.end():
 # do something
 m.next()

C++ iterators are often dereferenced to get information, eg
(*it). With Python these are all mapped to named methods, as
follows:

		Iterator
		Dereferencing method

		PositionIterator
		get_termpos()

		PostingIterator
		get_docid()

		TermIterator
		get_term()

		ValueIterator
		get_value()

		MSetIterator
		get_docid()

		ESetIterator
		get_term()

Other methods, such as MSetIterator.get_document(), are
available unchanged.

MSet

MSet objects have some additional methods to simplify access (these
work using the C++ array dereferencing):

		Method name
		Explanation

		get_hit(index)
		returns MSetItem at index

		get_document_percentage(index)
		convert_to_percent(get_hit(index))

		get_document(index)
		get_hit(index).get_document()

		get_docid(index)
		get_hit(index).get_docid()

Additionally, the MSet has a property, mset.items, which returns a
list of tuples representing the MSet. This is now deprecated - please use the
property API instead (it works in Xapian 1.0.x too). The tuple members and the
equivalent property names are as follows:

		Index
		Property name
		Contents

		xapian.MSET_DID
		docid
		Document id

		xapian.MSET_WT
		weight
		Weight

		xapian.MSET_RANK
		rank
		Rank

		xapian.MSET_PERCENT
		percent
		Percentage weight

		xapian.MSET_DOCUMENT
		document
		Document object (Note: this member of the tuple was never actually set!)

Two MSet objects are equal if they have the same number and maximum possible
number of members, and if every document member of the first MSet exists at the
same index in the second MSet, with the same weight.

ESet

The ESet has a property, eset.items, which returns a list of
tuples representing the ESet. This is now deprecated - please use the
property API instead (it works in Xapian 1.0.x too). The tuple members and the
equivalent property names are as follows:

		Index
		Property name
		Contents

		xapian.ESET_TNAME
		term
		Term name

		xapian.ESET_WT
		weight
		Weight

Non-Class Functions

The C++ API contains a few non-class functions (the Database factory
functions, and some functions reporting version information), which are
wrapped like so for Python:

		Xapian::version_string() is wrapped as xapian.version_string()

		Xapian::major_version() is wrapped as xapian.major_version()

		Xapian::minor_version() is wrapped as xapian.minor_version()

		Xapian::revision() is wrapped as xapian.revision()

		Xapian::Auto::open_stub() is wrapped as xapian.open_stub() (now deprecated)

		Xapian::Chert::open() is wrapped as xapian.chert_open() (now deprecated)

		Xapian::InMemory::open() is wrapped as xapian.inmemory_open()

		Xapian::Remote::open() is wrapped as xapian.remote_open() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

		Xapian::Remote::open_writable() is wrapped as xapian.remote_open_writable() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter. In Python, this is wrapped to accept any Python sequence (for
example a list or tuple) to give the terms/queries, and you can specify
a mixture of terms and queries if you wish. For example:

subq = xapian.Query(xapian.Query.OP_AND, "hello", "world")
q = xapian.Query(xapian.Query.OP_AND, [subq, "foo", xapian.Query("bar", 2)])

MatchAll and MatchNothing

As of 1.1.1, these are wrapped as xapian.Query.MatchAll and
xapian.Query.MatchNothing.

MatchDecider

Custom MatchDeciders can be created in Python; simply subclass
xapian.MatchDecider, ensure you call the super-constructor, and define a
__call__ method that will do the work. The simplest example (which does nothing
useful) would be as follows:

class mymatchdecider(xapian.MatchDecider):
 def __init__(self):
 xapian.MatchDecider.__init__(self)

 def __call__(self, doc):
 return 1

ValueRangeProcessors

The ValueRangeProcessor class (and its subclasses) provide an operator() method
(which is exposed in python as a __call__() method, making the class instances
into callables). This method checks whether a beginning and end of a range are
in a format understood by the ValueRangeProcessor, and if so, converts the
beginning and end into strings which sort appropriately. ValueRangeProcessors
can be defined in python (and then passed to the QueryParser), or there are
several default built-in ones which can be used.

Unfortunately, in C++ the operator() method takes two std::string arguments by
reference, and returns values by modifying these arguments. This is not
possible in Python, since strings are immutable objects. Instead, in the
Python implementation, when the __call__ method is called, the resulting values
of these arguments are returned as part of a tuple. The operator() method in
C++ returns a value number; the return value of __call__ in python consists of
a 3-tuple starting with this value number, followed by the returned “begin”
value, followed by the returned “end” value. For example:

vrp = xapian.NumberValueRangeProcessor(0, '$', True)
a = '$10'
b = '20'
slot, a, b = vrp(a, b)

Additionally, a ValueRangeProcessor may be implemented in Python. The Python
implementation should override the __call__() method with its own
implementation, and, again, since it cannot return values by reference, it
should return a tuple of (value number, begin, end). For example:

class MyVRP(xapian.ValueRangeProcessor):
 def __init__(self):
 xapian.ValueRangeProcessor.__init__(self)
 def __call__(self, begin, end):
 return (7, "A"+begin, "B"+end)

Apache and mod_python/mod_wsgi

Prior to Xapian 1.3.0, you had to tell mod_python and mod_wsgi to run
applications which use Xapian in the main interpreter. Xapian 1.3.0 no
longer uses the simplified GIL state API, and so this restriction should
no longer apply.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/facets.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Faceting Support

Table of contents

		Xapian Faceting Support
		Introduction

		How to use Faceting
		Indexing

		Searching
		Finding Facets

		Restricting by Facet Values

Introduction

Xapian provides functionality which allows you to dynamically generate complete
lists of category values which feature in matching documents. There are
numerous potential uses this can be put to, but a common one is to offer the
user the ability to narrow down their search by filtering it to only include
documents with a particular value of a particular category. This is often
referred to as faceted search.

You may have many multiple facets (for example colour, manufacturer, product
type) so Xapian allows you to handle multiple facets at once.

How to use Faceting

Indexing

When indexing a document, you need to add each facet in a different numbered
value slot. As described elsewhere in the documentation, each Xapian document
has a set of “value slots”, each of which is addressed by a number, and can
contain a value which is an arbitrary string.

The Xapian::Document::add_value() method can be used to put values into a
particular slot. So, if you had a database of books, you might put “price”
facet values in slot 0, say (serialised to strings using
Xapian::sortable_serialise, or some similar function), “author” facet
values in slot 1, “publisher” facet values in slot 2 and “publication type”
(eg, hardback, softback, etc) values in slot 3.

Searching

Finding Facets

At search time, for each facet you want to consider, you need to get a count of
the number of times each facet value occurs in each slot; for the example
above, if you wanted to get facets for “price”, “author” and “publication type”
you’d want to get the counts from slots 0, 1 and 3.

This can be done by calling Xapian::Enquire::add_matchspy() with a pointer
to a Xapian::ValueCountMatchSpy object for each value slot you want to
get facet counts for, like so:

Xapian::ValueCountMatchSpy spy0(0);
Xapian::ValueCountMatchSpy spy1(1);
Xapian::ValueCountMatchSpy spy3(3);

Xapian::Enquire enq(db);
enq.add_matchspy(&spy0);
enq.add_matchspy(&spy1);
enq.add_matchspy(&spy3);

enq.set_query(query);

Xapian::MSet mset = enq.get_mset(0, 10, 10000);

The 10000 in the call to get_mset() tells Xapian to check at least
10000 documents, so the MatchSpy objects will be passed at least 10000
documents to tally facet information from (unless fewer than 10000 documents
match the query, in which case they will see all of them). Setting this to
db.get_doccount() will make the facet counts exact, but Xapian will have to
do more work for most queries so searches will be slower.

The spy objects now contain the facet information. You can find out how
many documents they looked at by calling spy0.get_total(). (All the spies
will have looked at the same number of documents.) You can read the values
from, say, spy0 like this:

Xapian::TermIterator i;
for (i = spy0.values_begin(); i != spy0.values_end(); ++i) {
 cout << *i << ": " << i.get_termfreq() << endl;
}

Restricting by Facet Values

If you’re using the facets to offer the user choices for narrowing down
their search results, you then need to be able to apply a suitable filter.

For a single value, you could use Xapian::Query::OP_VALUE_RANGE with the
same start and end, or Xapian::MatchDecider, but it’s probably most
efficient to also index the categories as suitably prefixed boolean terms and
use those for filtering.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python/docs/xapian.html

 Navigation

 		
 index

 		Xapian docs documentation »

xapian Package

xapian Package

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/glossary.html

 Navigation

 		
 index

 		Xapian docs documentation »

Glossary

This glossary defines specialized terminology you may encounter while using
Xapian. Some of the entries are standard in the field of Information
Retrieval, while others have a specific meaning in the context of Xapian.

		BM25

		The weighting scheme which Xapian uses by default. BM25 is a refinement on
the original probabilistic weighting scheme, and recent TREC tests have shown
BM25 to be the best of the known probabilistic weighting schemes. It’s
sometimes known as “Okapi BM25” since it was first implemented in an
academic IR system called Okapi.

		Boolean Retrieval

		Retrieving the set of documents that match a boolean query (e.g. a
list of terms joined with a combination of operators such as AND, OR,
AND_NOT). In many systems, these documents are not ranked according to their
relevance. In Xapian, a pure Boolean query may be used, or alternatively a
Boolean style query can filter the retrieved documents, which are then ordered
using a probabilistic ranking.

		Brass

		Brass was the current “under development” database format in Xapian 1.2.x,
1.3.0 and 1.3.1. It was renamed to ‘glass’ in Xapian 1.3.2 because we decided
to use backend names in ascending alphabetical order to make it easier to
understand which backend is newest, and since ‘flint’ was used recently, we
skipped over ‘d’, ‘e’ and ‘f’.

		Chert

		Chert is the stable database format used in Xapian 1.2.x. It is similar
to Flint in many ways, but generally faster, and uses significantly less disk
space. Chert is very efficient and highly scalable. It supports incremental
modifications, and concurrent single-writer and multiple-reader access to a
database.

		Collection Frequency

		The collection frequency of a term is the total number of times is occurs in
the database. This is equal to the sum of the within-document frequency for
the term in all the documents it occurs in.

		Database

		In Xapian (as opposed to a relational database system) a database consists of
little more than indexed documents: this reflects the purpose of Xapian as an
information retrieval system, rather than an information storage system.
These may also occasionally be called Indexes. Chert is the backend used
from Xapian 1.2 onwards; Flint was used from Xapian 1.0 onwards; Quartz was
used in older versions.

		Document ID

		A unique positive integer identifying a document in a Xapian database.

		Document data

		The document data is one of several types of information that can be
associated with each document, the contents can be set to be anything in any
format, examples include fields such as URL, document title, and an excerpt of
text from the document. If you wish to interpolate with Omega, it should
contain name=value pairs, one per line (recent versions of Omega also support
one field value per line, and can assign names to line numbers in the
query template).

		Document

		These are the items that are being retrieved. Often they will be text
documents (e.g. web pages, email messages, word processor documents)
but they could be sections within such a document, or photos, video, music,
user profiles, or anything else you want to index.

		Edit distance

		A measure of how many “edits” are required to turn one text string into
another, used to suggest spelling corrections. The algorithm Xapian uses
counts an edit as any of inserting a character, deleting a character,
changing a character, or transposing two adjacent characters.

		ESet (Expand Set)

		The Expand Set (ESet) is a ranked list of terms that could be used to expand
the original query. These terms are those which are statistically good
differentiators between relevant and non-relevant documents.

		Flint

		Flint was the default database format used in Xapian 1.0.x. It was
deprecated in 1.2.x and removed in 1.3.0.

		Glass

		Glass is the current “under development” database format as of Xapian 1.3.2.
We try to keep it as stable as chert - the main difference is that
incompatible changes may be made which will require you to reindex, even
between stable point release. In release 1.4.0, glass will be declared stable
and made the default backend, and chert will then be deprecated.

		Index

		If a document is described by a term, this term is said to index the document.
Also, the database in Xapian and other IR systems is sometimes called an index
(by analogy with the index in the back of a book).

		Indexer

		The indexer takes documents (in various formats) and processes them so that they
can be searched efficiently, they are then stored in the database.

		Information Need

		The information need is what the user is looking for. They will usually
attempt to express this as a query string.

		Information Retrieval (IR)

		Information Retrieval is the “science of search”. It’s the name used to
refer to the study of search and related topics in academia.

		MSet (Match Set)

		The Match Set (MSet) is a ranked list of documents resulting from a query.
The list is ranked according to document weighting, so the top document has
the highest probability of relevance, the second document the second highest,
and so on. The number of documents in the MSet can be controlled, so it does
not usually contain all of the matching documents.

		Normalised document length (ndl)

		The normalised document length (ndl) is the length of a document (the number
of terms it contains) divided by the average length of the documents
within the system. So an average length document would have ndl equal to 1,
while shorter documents have ndl less than 1, and longer documents greater
than 1.

		Omega

		Omega comprises two indexers and a CGI search application built using the
Xapian library.

		Posting List

		A posting list is a list of the documents which a specific term indexes. This
can be thought of as a list of numbers - the document IDs.

		Posting

		An instance of a particular term indexing a particular document.

		Precision

		Precision is the density of relevant documents amongst those retrieved: the
number of relevant documents returned divided by the total number of documents
returned.

		Probabilistic IR

		Probabilistic IR is retrieval based on probability theory, this can produce a
ranked list of documents based upon relevance. Xapian uses probabilistic
methods (the only exception is when a pure Boolean query is chosen)

		Quartz

		Quartz was the database format used by Xapian prior to version 1.0. Support
was dropped completely as of Xapian 1.1.0.

		Query

		A query is the information need expressed in a form that an IR system can
read. It is usually a text string containing terms, and may include Boolean
operators such as AND or OR, etc.

		Query Expansion

		Modifying a query in an attempt to broaden the search results.

		RSet (Relevance Set)

		The Relevance Set (RSet) is the set of documents which have been marked by the
user as relevant. They can be used to suggest terms that the user may want to
add to the query (these terms form an ESet), and also to adjust term weights
to reorder query results.

		Recall

		Recall is the proportion of relevant documents retrieved - the number of
relevant documents retrieved divided by the total number of relevant
documents.

		Relevance

		Essentially, a document is relevant if it is what the user wanted. Ideally,
the retrieved documents will all be relevant, and the non-retrieved ones all
non-relevant.

		Searcher

		The searcher is a part of the IR system, it takes queries and reads the
database to return a list of relevant documents.

		Stemming

		A stemming algorithm performs linguistic normalisation by reducing variant
forms of a word to a common form. In English, this mainly involves removing
suffixes - such as converting any of the words “talking”, “talks”, or “talked”
to the stem form “talk”.

		Stop word

		A word which is ignored during indexing and/or searching, usually because it
is very common or doesn’t convey meaning. For example, “the”, “a”, “to”.

		Synonyms

		Xapian can store synonyms for terms, and use these to implement one approach
to query expansion.

		Term List

		A term list is the list of terms that index a specific document. In some
systems this may be a list of numbers (with each term represented by a number
internally), in Xapian it is a list of strings (the terms).

		Term frequency

		The term frequency of a specific term is the number of documents in the system
that are indexed by that term.

		Term

		A term is a string of bytes (often a word or word stem) which describes a
document. Terms are similar to the index entries found in the back of a book
and each document may be described by many terms. A query is composed from
a list of terms (perhaps linked by Boolean operators).

		Term Prefix

		By convention, terms in Xapian can be prefixed to indicate a field in the
document which they come from, or some other form of type information.
The term prefix is usually a single capital letter.

		Test Collection

		A test collection consists of a set of documents and a set of queries each of
which has a complete set of relevance assignments - this is used to test how
well different IR methods perform.

		UTF-8

		A standard variable-length byte-oriented encoding for Unicode.

		Value

		A discrete meta-data attribute attached to a document. Each document can
have many values, each stored in a different numbered slot. Values are
designed to be fast to access during the matching process, and can be used for
sorting, collapsing redundant documents, implementing ranges, and other uses.
If you’re just wanting to store “fields” for displaying results, it’s better
to store them in the document data.

		Within-document frequency (wdf)

		The within-document frequency (wdf) of a term in a specific document is the
number of times it is pulled out of the document in the indexing process.
Usually this is the size of the wdp vector, but in Xapian it can exceed it,
since we can apply extra wdf to some parts of the document text.

		Within-document positions (wdp)

		In the case where a term derives from words actually in the document, the
within-document positions (wdp) are the positions at which that word occurs
within the document. So if the term derives from a word that occurs three
times in the document as the fifth, 22nd and 131st word, the wdps will be 5,
22 and 131.

		Within-query frequency (wqf)

		The within-query frequency (wqf) is the number of times a term occurs in the
query. This statistic is used in the BM25 weighing scheme.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python3/docs/introduction.html

 Navigation

 		
 index

 		Xapian docs documentation »

Python3 bindings for Xapian

Table of contents

		Python3 bindings for Xapian
		Strings

		Unicode

		Exceptions

		Iterators

		MSet

		Non-Class Functions

		Query
		MatchAll and MatchNothing

		MatchDecider

		ValueRangeProcessor

		Apache and mod_python/mod_wsgi

		Test Suite

Xapian’s Python3 bindings are packaged in the xapian module - to use
them, you’ll need to add this to your code:

import xapian

They currently require at least Python 3.2. We’ve not tested with
Python 3.1 - test results and any patches needed are most welcome.

The Python API largely follows the C++ API - the differences and
additions are noted below.

The examples subdirectory contains examples (based on the simple C++ example)
showing how to use the Python bindings:
simpleindex.py,
simplesearch.py,
simpleexpand.py.
There’s also
simplematchdecider.py
which shows how to define a MatchDecider in Python.

Strings

The Xapian C++ API is largely agnostic about character encoding, and uses the
std::string type as an opaque container for a sequence of bytes.
In places where the bytes represent text (for example, in the
Stem, QueryParser and TermGenerator classes), UTF-8 encoding is used. In
order to wrap this for Python, std::string is mapped to/from the Python
bytes type.

As a convenience, you can also pass Python
str objects as parameters where this is appropriate, which will be
converted to UTF-8 encoded text. Where std::string is
returned, it’s always mapped to bytes in Python, which you can
convert to a Python str by calling .decode(‘utf-8’)
on it like so:

for i in doc.termlist():
 print(i.term.decode('utf-8'))

Unicode

Currently Xapian doesn’t have built-in support for normalising Unicode, so
if you want to normalise Unicode text, you’ll need to do so in Python. The
standard unicodedata module provides a way to do this - you probably want the
NFKC normalisation scheme, so normalising a query string prior to parsing it
would look something like this:

query_string = get_query_string()
query_string = unicodedata.normalize('NFKC', query_string)
qp = xapian.QueryParser()
query_obj = qp.parse_query(query_string)

Exceptions

Xapian exceptions are translated into Python exceptions with the same names
and inheritance hierarchy as the C++ exception classes. The base class of
all Xapian exceptions is the xapian.Error class, and this in
turn is a child of the standard python exceptions.Exception
class.

This means that programs can trap all xapian exceptions using except
xapian.Error, and can trap all exceptions which don’t indicate that
the program should terminate using except Exception.

Iterators

The iterator classes in the Xapian C++ API are wrapped in a Pythonic style.
The following are supported (where marked as “default iterator”, it means
__iter__() does the right thing, so you can for instance use
for term in document to iterate over terms in a Document object):

Python iterators

		Class
		Python Method
		Equivalent C++ Method
		Iterator type

		MSet
		default iterator
		begin()
		MSetIter

		ESet
		default iterator
		begin()
		ESetIter

		Enquire
		matching_terms()
		get_matching_terms_begin()
		TermIter

		Query
		default iterator
		get_terms_begin()
		TermIter

		Database
		allterms() (and default iterator)
		allterms_begin()
		TermIter

		Database
		postlist(term)
		postlist_begin(term)
		PostingIter

		Database
		termlist(docid)
		termlist_begin(docid)
		TermIter

		Database
		positionlist(docid, term)
		positionlist_begin(docid, term)
		PositionIter

		Database
		metadata_keys(prefix)
		metadata_keys(prefix)
		TermIter

		Database
		spellings()
		spellings_begin(term)
		TermIter

		Database
		synonyms(term)
		synonyms_begin(term)
		TermIter

		Database
		synonym_keys(prefix)
		synonym_keys_begin(prefix)
		TermIter

		Document
		values()
		values_begin()
		ValueIter

		Document
		termlist() (and default iterator)
		termlist_begin()
		TermIter

		QueryParser
		stoplist()
		stoplist_begin()
		TermIter

		QueryParser
		unstemlist(term)
		unstem_begin(term)
		TermIter

		ValueCountMatchSpy
		values()
		values_begin()
		TermIter

		ValueCountMatchSpy
		top_values()
		top_values_begin()
		TermIter

The pythonic iterators generally return Python objects, with properties
available as attribute values, with lazy evaluation where appropriate. An
exception is PositionIter (as returned by Database.positionlist), which
returns an integer.

The lazy evaluation is mainly transparent, but does become visible in one situation: if you keep an object returned by an iterator, without evaluating its properties to force the lazy evaluation to happen, and then move the iterator forward, the object may no longer be able to efficiently perform the lazy evaluation. In this situation, an exception will be raised indicating that the information requested wasn’t available. This will only happen for a few of the properties - most are either not evaluated lazily (because the underlying Xapian implementation doesn’t evaluate them lazily, so there’s no advantage in lazy evaluation), or can be accessed even after the iterator has moved. The simplest work around is to evaluate any properties you wish to use which are affected by this before moving the iterator. The complete set of iterator properties affected by this is:

		Database.allterms (also accessible as Database.__iter__): termfreq

		Database.termlist: termfreq and positer

		Document.termlist (also accessible as Document.__iter__): termfreq and positer

		Database.postlist: positer

MSet

MSet objects have some additional methods to simplify access (these
work using the C++ array dereferencing):

MSet additional methods

		Method name
		Explanation

		get_hit(i)
		returns MSetItem at index i

		get_document_percentage(i)
		convert_to_percent(get_hit(i))

		get_document(i)
		get_hit(i).get_document()

		get_docid(i)
		get_hit(i).get_docid()

Two MSet objects are equal if they have the same number and maximum possible
number of members, and if every document member of the first MSet exists at the
same index in the second MSet, with the same weight.

Non-Class Functions

The C++ API contains a few non-class functions (the Database factory
functions, and some functions reporting version information), which are
wrapped like so for Python 3:

		Xapian::version_string() is wrapped as xapian.version_string()

		Xapian::major_version() is wrapped as xapian.major_version()

		Xapian::minor_version() is wrapped as xapian.minor_version()

		Xapian::revision() is wrapped as xapian.revision()

		Xapian::Auto::open_stub() is deprecated in C++, so not wrapped for Python 3

		Xapian::Chert::open() is deprecated in C++, so not wrapped for Python 3

		Xapian::InMemory::open() is wrapped as xapian.inmemory_open()

		Xapian::Remote::open() is wrapped as xapian.remote_open() (both
the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to
decide which to call).

		Xapian::Remote::open_writable() is wrapped as xapian.remote_open_writable() (both
the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to
decide which to call).

The version of the bindings in use is available as xapian.__version__ (as
recommended by PEP 396). This may not be the same as xapian.version_string()
as the latter is the version of xapian-core (the C++ library) in use.

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter. In Python, this is wrapped to accept any Python sequence (for
example a list or tuple) of terms or queries (or even a mixture of terms
and queries). For example:

subq = xapian.Query(xapian.Query.OP_AND, "hello", "world")
q = xapian.Query(xapian.Query.OP_AND, [subq, "foo", xapian.Query("bar", 2)])

MatchAll and MatchNothing

As of 1.1.1, these are wrapped as xapian.Query.MatchAll and
xapian.Query.MatchNothing.

MatchDecider

Custom MatchDeciders can be created in Python by subclassing
xapian.MatchDecider and defining a __call__ method
that will do the work. Make sure you call the base class constructor in
your constructor. The simplest example (which does nothing useful) would be as
follows:

class mymatchdecider(xapian.MatchDecider):
 def __init__(self):
 xapian.MatchDecider.__init__(self)

 def __call__(self, doc):
 return 1

ValueRangeProcessor

The ValueRangeProcessor class (and its subclasses) provide an operator() method
(which is exposed in python as a __call__() method, making the class instances
into callables). This method checks whether a beginning and end of a range are
in a format understood by the ValueRangeProcessor, and if so, converts the
beginning and end into strings which sort appropriately. ValueRangeProcessors
can be defined in python (and then passed to the QueryParser), or there are
several default built-in ones which can be used.

In C++ the operator() method takes two std::string arguments by reference,
which the subclassed method can modify, and returns a value slot number.
In Python, we wrap this by passing two bytes objects to
__call__ and having it return a tuple of (value_slot, modified_begin,
modified_end). For example:

vrp = xapian.NumberValueRangeProcessor(0, '$', True)
a = '$10'
b = '20'
slot, a, b = vrp(a, b)

You can implement your own ValueRangeProcessor in Python. The Python
implementation should override the __call__() method with its own
implementation, which returns a tuple as above. For example:

class MyVRP(xapian.ValueRangeProcessor):
 def __init__(self):
 xapian.ValueRangeProcessor.__init__(self)
 def __call__(self, begin, end):
 return (7, "A"+begin, "B"+end)

Apache and mod_python/mod_wsgi

Prior to Xapian 1.3.0, applications which use the xapian module had to be
run in the main interpreter under mod_python and mod_wsgi. As of 1.3.0,
the xapian module no longer uses Python’s simplified GIL state API, and so this
restriction should no longer apply.

Test Suite

The Python bindings come with a test suite, consisting of two test files:
smoketest.py and pythontest.py. These are run by the make check command,
or may be run manually. By default, they will display the names of any tests
which failed, and then display a count of tests which run and which failed.
The verbosity may be increased by setting the VERBOSE environment variable,
for example:

make check VERBOSE=1

Setting VERBOSE to 1 will display detailed information about failures, and a
value of 2 will display further information about the progress of tests.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python3/docs/xapian.html

 Navigation

 		
 index

 		Xapian docs documentation »

xapian Package

xapian Package

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/cgiparams.html

 Navigation

 		
 index

 		Xapian docs documentation »

CGI parameters to Omega

In addition to the parameters listed here, all other parameters are
retained. Arbitrary CGI parameters may be read with the $cgi{PARAM}
and $cgilist{PARAM} OmegaScript commands.

Note that all CGI parameters are modified by Omega before they become
part of $cgilist{} - see the section at the end for details.

Main query parameters

		DB

		database name. If the DB parameter is specified more than once, each
value is used to allow searching over multiple databases. Also, the
value of each DB parameter may be a list of database names separated by
“/”. If no DB parameters are specified, then the database name
defaults to default. If you want to search over a combination
of databases by default then you can make the default database a
stub database file - see the “Overview” document in xapian-core for
details of the format.

		xDB

		database(s) used for last query (separated by / if appropriate).
If the database(s) used change then relevance judgements are
discarded and the first page of matches is shown.

		DEFAULTOP

		default operator - values recognised AND, and, OR, or.
As of version 1.3.0, the default is AND (previously it was OR).
If you want to implement “match any words”, set DEFAULTOP=or.

		P

		probabilistic query (may occur multiple times).

		xP

		terms from previous probabilistic query - used to decide if
this is a fresh query (in which case relevance judgements are
discarded and the first page of matches is shown), an extended query
(in which case the first page of matches is shown), or an unchanged
query.

		ADD

		if present, any X parameters are added to the probabilistic
query (used for topterms support when JavaScript isn’t
supported or is disabled).

		X

		topterms to add to query.

		R

		relevant document(s) (multiple values separated by ”.”)

		MORELIKE

		value is a document id to return similar pages to, or a term name
(which will be looked up and the document id of the first document it
indexes will be used - this allows a MORELIKE query based on the
unique id from an external database)

		RAWSEARCH

		when set to non-zero value, this prevents TOPDOC being snapped to a
multiple of HITSPERPAGE. Normally we snap TOPDOC like this so that
things work nicely if HITSPERPAGE is in a picker or on radio buttons.
If we’re postprocessing the output of omega and want variable sized
pages, this is unhelpful.

		MINHITS

		can be set to look for more matches than would otherwise be looked for
to you can be sure how many more consecutive pages will definitely be
needed to show results. By default omega asks for one hit more than
the last one displayed on this page (so we know for sure if there is a
next page or not). If MINHITS is set, we ask for at least MINHITS
matches from the start of the current page - you can think of MINHITS
as defaulting to (HITSPERPAGE + 1).

Filtering parameters

		B

		general boolean filter terms. See the overview document for details of how multiple B parameters are handled.

		COLLAPSE

		value number to use for removing duplicate documents.
Additional documents in the MSet with the same value will be
removed from the MSet. $value{$cgi{COLLAPSE}} can be used to
access the actual value for each hit.

		DATEVALUE

		value number to use for date range filtering. If this isn’t set then
date filtering will use the older approach based on D-, M-, and
Y-prefixed terms. The values must be of the format YYYYMMDDHHMM
(e.g. 200702142359), YYYYMMDD (e.g. 20070214), or a raw 4 byte
big-endian value representing a time_t (omindex adds this as value 0
by default).

		SPAN

		filter on this number of days up to END (if set), or after
START (if set), or before today’s date (otherwise).

		START

		start of date range, in the format YYYYMMDD (defaults to 1st January
1970). If value-based date ranges are used (see DATEVALUE parameter)
then the format YYYYMMDDHHMM is also valid.

		END

		end of date range, in the format YYYYMMDD (defaults to today’s date).
If value-based date ranges are used (see DATEVALUE parameter) then the
format YYYYMMDDHHMM is also valid.

		xFILTERS

		used to spot when the filters have changed from the previous search.
Set this to $html{$filters} in your query template ($filters is a
compact serialisation of the currently set B filters, date-range
filters, COLLAPSE, and DEFAULTOP).

		THRESHOLD

		apply a percentage cut-off at the value given by this parameter
(clipped to the range 0-100).

Reordering parameters

		SORT

		reorder results by this value number. The comparison used is a string
compare of the unsigned byte values, and greater values are better
by default (but this can be changed by setting SORTREVERSE to a
non-zero value).

		SORTREVERSE

		if non-zero, reverse the sort order so that lower values are better.
This parameter has no effect unless SORT is also specified.

		SORTAFTER

		if non-zero, order results by relevance, only sorting by value to
order values with the same relevance score. This parameter has no
effect unless SORT is also specified.

		DOCIDORDER

		set the ordering used when a comparison ends up being by docid (i.e.
two documents with equal relevance and/or values). By default (if
DOCIDORDER isn’t set or is empty) this puts them in ASCENDING order
(the lowest document id ranks highest). If DOCIDORDER is specified
and non-empty it can begin with “D” for DESCENDING order, “A” for
ASCENDING order or any other character for DONT_CARE (the Xapian
database backend will use whichever order is most efficient). Any
characters after the first are ignored.

Display parameters and navigation

		FMT

		name of page format to use (may not contain ..).

		HITSPERPAGE

		hits per page (integer) - clipped to range 10-1000.

		TOPDOC

		first document to display (snapped to multiple of HITSPERPAGE
if RAWSEARCH is not set)

If a parameter named ‘<’ or ‘>’ exists, Omega will go to the previous
or next results page (based on the value of TOPDOC), respectively. If
not, and a parameter named ‘[‘ or ‘#’ exists, it will jump to the page
number given by that parameter (trailing junk after the number is
ignored). (See the section below on modification of CGI parameters to
see how this works.)

This means that <input type=’image’ .../> form buttons can have names
of the form ‘[3]’, which looks nice in lynx, for tooltips, and so
on. For text-only links, you really need to write out the entire GET
parameters and use a normal anchor.

Modification of CGI parameters

For an image button, two CGI parameters are passed from the HTML
client, of the form “PARAM.x” and “PARAM.y” (the x and y coordinates
within the image that were clicked).

The PARAM part of the parameters are taken from the value attribute of
the <input> element that specified that image button in the HTML
page. We regularly use image buttons to provide pretty navigation
within search results (they are part of a form because it is easier to
treat more or less all of Omega as a single form, rather than
generating very long GET requests for every button on the results
page), so Omega does some mangling of these parameters:

		PARAM.y is silently dropped

		PARAM.x is truncated to PARAM

		
		if PARAM contains a space (the CGI parameter name, not the value):

		
		the value becomes everything after the first space; the
original value is dropped. (e.g.: [2].x=NNN becomes [=2])

		otherwise:

		
		if PARAM is entirely numeric, the name becomes ‘#’ and the value
becomes PARAM. (e.g.: 2.x=NNN becomes #=2)

		if PARAM is not entirely numeric, the value is copied from PARAM
(e.g.: >.x=NNN becomes >=>)

Then, for ALL CGI parameters, the name is truncated at the first
space. So [page two]=2 becomes [=2.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Omega Documentation

The following documents are available:

		Quick start

		Overview

		scriptindex

		CGI Parameters

		OmegaScript

		Term Prefixes

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/termprefixes.html

 Navigation

 		
 index

 		Xapian docs documentation »

Term Prefixes

Xapian itself doesn’t put any restrictions on the contents of a term, other
than that terms can’t be empty, and there’s an upper limit on the length
(which is backend dependent - chert and glass allow 245 bytes, except
that zero bytes count double in this length).

However, Omega and Xapian::QueryParser impose some rules to aid
interoperability and make it easier to write code that doesn’t require
excessive configuring. It’s probably wise to follow these rules unless
you have a good reason not to. Right now you might not intend to use Omega
or the QueryParser, not to combine a search with another database. But if
you later find you do, it’ll be much easier if you’re using compatible
rules!

The basic idea is that terms won’t begin with a capital letter (since they’re
usually lower-cased and often stemmed), so any term which starts with a capital
letter is assumed to have a prefix. For all letters apart from X, this is a
single character prefix and these have predefined standard meanings (or are
reserved for standard meanings but currently unallocated).

X starts a multi-capital letter user-defined prefix. If you want a prefix for
something without a standard prefix, you create your own starting with an X
(e.g. XSHOESIZE). The prefix ends with the first non-capital. If the term
you’re prefixing starts with a capital, add a ”:” between prefix and term to
resolve ambiguity about where the prefix ends and the term begins.

Here’s the current allocation list:

		A

		Author

		B

		Topic (mnemonic: what the document is aBout)

		D

		Date (numeric format: YYYYMMDD or “latest” - e.g. D20050224 or Dlatest)

		E

		Extension (folded to lowercase - e.g. Ehtml, or E for no extension)

		G

		newsGroup (or similar entity - e.g. a web forum name)

		H

		Hostname

		I

		boolean filter term for “can see” permission (mnemonic: Include)

		K

		Keyword

		L

		ISO Language code

		M

		Month (numeric format: YYYYMM)

		N

		ISO couNtry code (or domaiN name)

		O

		Owner

		P

		Pathname

		Q

		uniQue id

		R

		Raw (i.e. unstemmed) term (unused by Xapian since 1.0.0)

		S

		Subject (or title)

		T

		mimeType

		U

		full URL of indexed document - if the resulting term would be > 240
characters, a hashing scheme is used to prevent overflowing
the Xapian term length limit (see omindex for how to do this).

		V

		boolean filter term for “can’t see” permission (mnemonic: grep -v)

		X

		longer prefix for user-defined use

		Y

		year (four digits)

		Z

		stemmed term

Reserved but currently unallocated: CFJW

There are two main uses for prefixes - boolean filters and probabilistic
(i.e. free text) fields.

Boolean Filters

If the documents being indexed represent people, you might have a gender
field (e.g. M for Male, F for Female, X for Unknown). Gender doesn’t have
a standard prefix, so you might allocated “XGENDER”. And then lowercase
the field contents to avoid needing to always add a colon. So documents
will be indexed by one of XGENDERm, XGENDERf, or XGENDERx.

If you’re indexing using scriptindex, and have a field in the input file
which can be “gender=M”, etc, then your index script would have a rule
such as:

gender : lower boolean=XGENDER

You can then restrict a search in Omega by passing a B parameter with one
of these as the value, e.g. B=XGENDERf

In your HTML search form, you can allow the user to select this using a set of
radio buttons:

Gender:

<input type="radio" name="B" value=""> any

<input type="radio" name="B" value="XGENDERf"> female

<input type="radio" name="B" value="XGENDERm"> male

If you want to have multiple sets of radio buttons for selecting different
boolean filters, you can make use of Omega’s preprocessing of CGI parameter
names by calling them “B 1”, “B 2”, etc (names are truncated at the first
space - see cgiparams.html for full details).

You can also use a select tag:

Gender:
<select name="B">
<option value="">any</option>
<option value="XGENDERf">female</option>
<option value="XGENDERm">male</option>
<option value="XGENDERx">unknown</option>
</select>

You can also allow the user to restrict a search with a boolean filter
specified in text query (e.g. sex:f -> XGENDERf) by adding this to the
start of your OmegaScript template:

$setmap{boolprefix,sex,XGENDER}

Multiple aliases are allowed:

$setmap{boolprefix,sex,XGENDER,gender,XGENDER}

This decoupling of internal and external names is also useful if you want
to offer search frontends in more than one language, as it allows the
prefixes the user sees to be translated.

Probabilistic Fields

Say you want to index the title of the document such that the user can
search within the title by specifying title:report (for example) in their
query.

Title has standard prefix S, so you’d generate terms as normal, but then
add an “S” prefix. If you’re using scriptindex, then you do this by
adding “index=S” to the scriptindex rule like so:

title : field=title index=S

You then need to tell Xapian::QueryParser that “title:” maps to an “S” prefix.
If you’re using Omega, then you do so by adding this to your OmegaScript
template (at the start is best):

$setmap{prefix,title,S}

Or if you’re writing your own search frontend, like this:

Xapian::QueryParser qp;
qp.add_prefix("subject", "S");
// And similar lines for other probabilistic prefixes...
// And any other QueryParser configuration (e.g. stemmer, stopper).
Xapian::Query query = qp.parse_query(user_query_string);

You can add multiple aliases for a prefix (e.g. title and subject for S), and
the decoupling of “UI prefix” and “term prefix” means you can easily translate
the “UI prefixes” if you have frontends in different languages.

Note that if you want words from the subject to be found without a prefix, you
either need to generate unprefixed terms as well as the prefixed ones, or map
the empty prefix to both “” and “S” like so:

Xapian::QueryParser qp;
// Search both subject and body if no field is specified:
qp.add_prefix("", "");
qp.add_prefix("", "S");
// Search just the subject if 'subject:' is specified:
qp.add_prefix("subject", "S");
Xapian::Query query = qp.parse_query(user_query_string);

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/omegascript.html

 Navigation

 		
 index

 		Xapian docs documentation »

OmegaScript

OmegaScript adds processed text-generation commands to text templates
(which will usually be HTML, but can be XML or another textual format).
Commands take the form $command{comma,separated,arguments} or
$simplecommand, for example:

<html>
<head><title>Sample</title></head>
<body>

<p>
You searched for '$html{$query}'.
</p>

</body>
</html>

Where appropriate, arguments themselves can contain OmegaScript commands.
Where an argument is treated as a string, the string is precisely the contents
of that argument - there is no string delimiter (such as the double-quote
character ‘”’ in C and similar languages). This can make complex OmegaScript
slightly difficult to read at times.

When a command takes no arguments, the braces must be omitted (i.e.
$msize rather than $msize{} - the latter is a command with a single empty
argument). If you want to have the value of $msize immediately
followed by a letter, digit, or “_”, you can use an empty comment (${}) to
prevent the parser treating the following character as part of a command name.
E.g. _$msize${}_ rather than _$msize_

It is important to realise that all whitespace is significant in OmegaScript
- e.g. if you put whitespace around a ”,” which separates two command arguments
then the whitespace will be part of the respective arguments.

Note that (by design) OmegaScript has no unbounded looping constructs. You
can loop over entries in a list, but you can’t loop until some arbitrary
condition is met. This means that it’s not possible to accidentally (or
deliberately!) write an OmegaScript template which contains an infinite loop.

OmegaScript literals

$$ - literal '$'
$(- literal '{'
$) - literal '}'
$. - literal ','

OmegaScript commands

In the following descriptions, a LIST is a string of tab-separated
values.

		${...}

		commented-out code

		$addfilter{TERM}

		add filter term TERM as if it had been passed as a B CGI
parameter. You must use $addfilter before any command which
requires the query to have been parsed - see $setmap for a list
of these commands.

		$allterms{docid}

		list of all terms matching document

		$cgi{CGI}

		lookup the value of a CGI parameter. If the same parameter has
multiple values, $cgi will pick one arbitrarily - use $cgilist
if you want all the values.

		$cgilist{CGI}

		return a list of all values of a CGI parameter

		$collapsed

		number of other documents collapsed into current hit inside
$hitlist, which might be used like so:

$if{$ne{$collapsed,0},at least $collapsed hidden results ($value{$cgi{COLLAPSE}})}

		$date{TIME_T[,FMT]}

		convert a time_t to strftime FMT (default: YYYY-MM-DD). The
conversion is done in timezone UTC.

		$dbname

		database name (multiple names are returned separated by “/”).

		$dbsize

		number of documents in the database (if multiple databases are being
searched, this gives the total number).

		$def{MACRONAME,VALUE}

		define a macro which can take 0 to 9 arguments. You can call it with
$MACRONAME (if it take 0 arguments) or
$MACRONAME{ARG1,ARG2,ARG3} is it takes arguments. In value,
arguments are available as $1, $2, ... $9. In the current
implementation, macros can override OmegaScript commands, but this
shouldn’t be relied on. It’s recommended to use capitalised names for
macros to avoid collision with future OmegaScript commands.

		$defaultop

		“and” or “or” (set from CGI variable DEFAULTOP).

		$emptydocs[{TERM}]

		returns a list of docids of any documents with document length zero
(such documents probably only contain scanned images, rather than
machine readable text, or suggest the input filter isn’t working well).
If TERM is specified, only consider documents matching TERM, otherwise
all documents are considered (so Tapplication/pdf reports all PDF files
for which no text was found).

If you’re using omindex, note that it skips files with zero size, so
these won’t get reported here as they aren’t present in the database.

		$env{VAR}

		lookup variable VAR in the environment.

		$error

		error message (e.g. if a database wouldn’t open, or the query couldn’t
be parsed, or a Xapian exception has been thrown) or empty if there
wasn’t an error.

		$field{NAME[,DOCID]}

		lookup field NAME in document DOCID. If DOCID is omitted
then the current hit is used (which only works inside $hitlist).

If multiple instances of field exist the field values are returned tab
separated, which means you can pass the results to $map, e.g.:

$map{$field{keywords},$html{$_}
}

		$filesize{SIZE}

		pretty printed filesize (e.g. 1 byte, 100 bytes, 2.1K,
4.0M, 1.3G). If SIZE is negative, expands to nothing.

		$filters

		serialised version of filter-like settings (currently B, START,
END, SPAN, and DEFAULTOP) - set xFILTERS to this
so that Omega can detect when the filters have changed and force the
first page.

		$filterterms{PREFIX}

		list of all terms in the database with prefix PREFIX, intended to
be used to allow drop-down lists and sets of radio buttons to be
dynamically generated, e.g.:

Hostname:
<SELECT NAME="B">
<OPTION VALUE=""
$if{$map{$cgilist{B},$eq{$substr{$_,0,1},H}},,SELECTED}> Any
$map{$filterterms{H},
<OPTION VALUE="$html{$_}" $if{$find{$cgilist{B},$html{$_}},SELECTED}>
$html{$substr{$_,1}}
</OPTION>
}
</SELECT>

		$find{LIST,STRING}

		returns the number of the first entry in LIST which is equal to
STRING (starting from 0) or the empty string if no entry matches.

		$fmt

		name of current format (as set by CGI parameter``FMT``, or the default)

		$freq{term}

		frequency of a term

		$highlight{TEXT,LIST,[OPEN,[CLOSE]]}

		html escape string (<>&, etc) and highlight any terms from LIST
that appear in TEXT by enclosing them in OPEN and CLOSE.
If OPEN is specified, but close is omitted, CLOSE defaults to
the appropriate closing tag for OPEN (i.e. with a “/” in front and
any parameters removed). If both are omitted, then OPEN is set to:
<b style="color:XXXXX;background-color:#YYYYYY"> (where YYYYYY
cycles through ffff66 99ff99 99ffff ff66ff ff9999
990000 009900 996600 006699 990099 and XXXXX
is black is YYYYYY contains an f, and otherwise white)
and CLOSE is .

		$hit

		MSet index of current doc (first document in MSet is 0, so if
you want to number the hits 1, 2, 3, ... use $add{$hit,1}).

		$hitlist{FMT}

		display hitlist using format FMT.

		$hitsperpage

		hits per page (as set by HITSPERPAGE, or the default)

		$hostname{URL}

		return the hostname from url URL

		$html{TEXT}

		html escape string (<>&" are escaped to <, etc).

		$htmlstrip{TEXT}

		html strip tags from string (<...>, etc).

		$httpheader{NAME,VALUE}

		specify an additional HTTP header to be generated by Omega.
For example:

$httpheader{Cache-Control,max-age=0$.private}

If Content-Type is not specified by the template, it defaults
to text/html. Headers must be specified before any other
output from the OmegaScript template - any $httpheader{}
commands found later in the template will be silently ignored.

		$id

		document id of current document

		$json{STRING}

		encode STRING as a JSON string (not including the enclosing quotes), e.g.
$json{The path is "C:\"} gives The path is \"C:\\\"

		$jsonarray{LIST}

		encodes LIST (a string of tab-separated values) as a JSON array, e.g.
$jsonarray{$split{a "b" c:\}} gives ["a","\"b\"","c:\\"]

		$last

		MSet index of last hit on this page

		$lastpage

		number of last page of hits (may be an underestimate unless
$thispage == $lastpage).

		$length{LIST}

		number of entries in LIST.

		$list{LIST,...}

		pretty print list. If LIST contains 1, 2, 3, 4 then:

"$list{LIST,$. }" = "1, 2, 3, 4"
"$list{LIST,$. , and }" = "1, 2, 3 and 4"
"$list{LIST,List ,$. ,.}" = "List 1, 2, 3, 4."
"$list{LIST,List ,$. , and ,.}" = "List 1, 2, 3 and 4."

NB $list returns an empty string for an empty list (so the
last two forms aren’t redundant as it may at first appear).

		$log{LOGFILE[,ENTRY]}

		write to the log file LOGFILE in directory log_dir (set in
omega.conf). ENTRY is the OmegaScript for the log entry, and a
linefeed is appended. If LOGFILE cannot be opened for writing,
nothing is done (and ENTRY isn’t evaluated). ENTRY defaults to
a format similar to the Common Log Format used by webservers.

		$lookup{CDBFILE,KEY}

		Return the tag corresponding to key KEY in the CDB file
CDBFILE. If the file doesn’t exist, or KEY isn’t a key in it,
then $lookup expands to nothing. CDB files are compact disk based
hashtables. For more information and public domain software which can
create CDB files, please visit: http://www.corpit.ru/mjt/tinycdb.html

An example of how this might be used is to map top-level domains to
country names. Create a CDB file tld_en which maps “fr” to “France”,
“de” to “Germany”, etc and then you can translate a country code to
the English country name like so:

"$or{$lookup{tld_en,$field{tld}},.$field{tld}}"

If a tld isn’t in the CDB (e.g. “com”), this will expand to ”.com”.

You can take this further and prepare a set of CDBs mapping tld codes
to names in other languages - tld_fr for French, tld_de for German.
Then if you have the ISO language code in $opt{lang} you can
replace tld_en with tld_$or{$opt{lang},en} and automatically
translate into the currently set language, or English if no language is
set.

		$lower{TEXT}

		return UTF-8 text TEXT converted to lower case.

		$map{LIST,STUFF)

		map a list into the evaluated argument. If LIST is
1, 2 then:

"$map{LIST,x$_ = $_; }" = "x1 = 1; x2 = 2; "

Note that $map{} returns a list (this is a change from older
versions). If the tabs are a problem, use $list{$map{...},}
to get rid of them.

		$msize

		estimated number of matches.

		$msizeexact

		return true if $msize is exact (or “” if it is estimated).

		$nice{number}

		pretty print integer (with thousands separator).

		$now

		number of seconds since the epoch (suitable for feeding to $date).
Whether $now returns the same value for repeated calls in the same
Omega search session is unspecified.

		$opt{OPT}

		lookup an option value (as set by $set).

		$opt{MAP,OPT}

		lookup an option within a map (as set by $setmap).

		$pack{NUMBER}

		converts a number to a 4 byte big-endian binary string

		$percentage

		percentage score of current hit (in range 1-100).

You probably don’t want to show these percentage scores to end
users in new applications - they’re not really a percentage of
anything meaningful, and research seems to suggest that users
don’t find numeric scores in search results useful.

		$prettyterm{TERM}

		convert a term to “user form”, as it might be entered in a query. If
a matching term was entered in the query, just use that (the first
occurrence if a term was generated multiple times from a query).
Otherwise term prefixes are converted back to user forms as specified
by $setmap{prefix,...} and $setmap{boolprefix,...}.

		$prettyurl{URL}

		Prettify URL. This command undoes RFC3986 URL escaping which doesn’t
affect semantics in practice, in order to make a prettier version of a
URL for displaying to the user (rather than in links), but which should
still work if copied and pasted.

		$query[{PREFIX}]

		query string for prefix PREFIX.

If PREFIX is omitted or empty, this is built from CGI P variable(s)
plus possible added terms from ADD and X.

If PREFIX is non-empty, this is built from CGI P.PREFIX variables.

		$querydescription

		a human readable description of the Xapian::Query object which
omega builds. Mostly useful for debugging omega itself.

		$queryterms

		list of probabilistic query terms.

		$range{START,END}

		return list of values between START and END.

		$record[{ID}]

		raw record contents of document ID.

		$relevant[{ID}]

		document id ID if document is relevant, “” otherwise
(side-effect: removes id from list of relevant documents
returned by $relevants).

		$relevants

		return list of relevant documents

		$score

		score (0-10) of current hit (equivalent to $div{$percentage,10}).

		$set{OPT,VALUE}

		set option value which may be looked up using $opt. You can use
options as variables (for example, to store values you want to reuse
without recomputing). There are also several which Omega looks at
and which you can set or use:

		decimal - the decimal separator (”.” by default - localised query
templates may want to set this to ”,”).

		thousand - the thousands separator (”,” by default - localised query
templates may want to set this to ”.”, ” ”, or “”).

		stemmer - which stemming language to use (“english” by default, other
values are as understood by Xapian::Stem, so “none” means no
stemming).

		stem_all - if “true”, then tell the query parser to stem all words,
even capitalised ones.

		spelling - if “true”, then the query parser spelling correction
feature is enabled and $suggestion can be used. Deprecated -
use flag_spelling_correction instead (which was added in version
1.2.5).

		fieldnames - if set to a non-empty value then the document data is
parsed with each line being the value of a field, and the names
are taken from entries in the list in fieldnames. So
$set{fieldnames,$split{title sample url}} will take the first
line as the “title” field, the second as the “sample” field and the
third as the “url” field. Any lines without a corresponding field
name will be ignored. If unset or empty then the document data is
parsed as one field per line in the format NAME=VALUE (where NAME is
assumed not to contain ‘=’).

		weighting - set the weighting scheme to use, and (optionally) the
parameters to use if the weighting scheme supports them. The syntax
is a string consisting of the scheme name followed by any parameters,
all separated by whitespace. Any parameters not specified will use
their default values. Valid scheme names are
bb2 (in Omega >= 1.3.2), bm25, bool,
dlh (in Omega >= 1.3.2), dph (in Omega >= 1.3.2),
ifb2 (in Omega >= 1.3.2), ineb2 (in Omega >= 1.3.2),
inl2 (in Omega >= 1.3.2), lm (in Omega >= 1.3.2),
pl2 (in Omega >= 1.3.2), tfidf (in Omega >= 1.3.1),
and trad. e.g. $set{weighting,bm25 1 0.8}

		expansion - set the query expansion scheme to use, and (optionally)
the parameters to use if the expansion scheme supports them. The syntax
is a string consisting of the scheme name followed by any parameters,
all separated by whitespace. Any parameters not specified will use
their default values. Valid expansion schemes names are
trad and bo1. e.g.
$set{expansion,trad 2.0}

Omega 1.2.5 and later support the following options can be set to a
non-empty value to enable the corresponding QueryParser flag.
Omega sets flag_default to true by default - you can set it to
an empty value to turn it off ($set{flag_default,}):

		flag_auto_multiword_synonyms

		flag_auto_synonyms

		flag_boolean

		flag_boolean_any_case

		flag_default

		flag_lovehate

		flag_partial

		flag_phrase

		flag_pure_not

		flag_spelling_correction

		flag_synonym

		flag_wildcard

Omega 1.2.7 added support for search fields with a probabilistic
prefix, and you can set different QueryParser flags for each prefix -
for example, for the XFOO prefix use XFOO:flag_pure_not, etc.
The unprefixed constants provide a default value for these. If a flag
is set in the default, the prefix specific flag can unset it if it
is set to the empty value (e.g.
$set{flag_pure_not,1}$set{XFOO:flag_pure_not,}).

You can use :flag_partial, etc to set or unset a flag just for
unprefixed fields.

Similarly, XFOO:stemmer specifies the stemmer to use for field
XFOO, with stemmer providing a default.

		$setrelevant{docids}

		add documents into the RSet

		$setmap{MAP,NAME1,VALUE1,...}

		set a map of option values which may be looked up against using
$opt{MAP,NAME} (maps with the same name are merged rather than
the old map being completely replaced).

Omega uses the “prefix” map to set the prefixes understood by the query
parser. So if you wish to translate a prefix of “author:” to A and
“title:” to “S” you would use:

$setmap{prefix,author,A,title,S}

In Omega 1.3.0 and later, you can map a prefix in the query string to
more than one term prefix by specifying an OmegaScript list, for
example to search unprefixed and S prefix by default use this
(this also shows how you can map from an empty query string prefix, and
also that you can map to an empty term prefix - these don’t require
Omega 1.3.0, but become much more useful in combination with this new
feature):

$setmap{prefix,,$split{ S}}

Similarly, if you want to be able to restrict a search with a
boolean filter from the text query (e.g. “group:” to “G”) you
would use:

$setmap{boolprefix,group,G}

Don’t be tempted to add whitespace around the commas, unless you want
it to be included in the names and values!

Note: you must set the prefix maps before the query is parsed. This
is done as late as possible - the following commands require the
query to be parsed: $prettyterm, $query, $querydescription, $queryterms,
$relevant, $relevants, $setrelevant, $unstem, and also these commands
require the match to be run which requires the query to be parsed:
$freqs, $hitlist, $last, $lastpage, $msize, $msizeexact, $terms,
$thispage, $time, $topdoc, $topterms.

		$slice{LIST,POSITIONS}

		returns the elements from LIST at the positions listed in the
second list POSITIONS. The first item is at position 0.
Any positions which are out of range will be ignored.

For example, if LIST contains a, b, c, d then:

"$slice{LIST,2}" = "c"
"$slice{LIST,1 3}" = "b d"
"$slice{LIST,$range{1,3}}" = "b c d"
"$slice{LIST,$range{-10,10}}" = "a b c d"

		$snippet{TEXT[,LENGTH]}

		Generate a context-sensitive snippet from TEXT using the
Xapian::Snipper class. The snippet will be at most LENGTH
bytes long (default: 200).

$split{STRING}

		$split{SPLIT,STRING}

		returns a list by splitting the string STRING into elements at each
occurrence of the substring SPLIT. If SPLIT isn’t specified,
it defaults to a single space. If SPLIT is empty, STRING is
split into individual characters.

For example:

"$split{one two three}" = "one two three"

		$stoplist

		returns a list of any terms in the query which were ignored as
stopwords.

		$substr{STRING,START[,LENGTH]}

		returns the substring of STRING which starts at position START
(the start of the string being 0) and is LENGTH characters long (or
to the end of STRING if STRING is less than
START``+``LENGTH characters long). If LENGTH is omitted, the
substring from START to the end of STRING is returned.

If START is negative, it counts back from the end of STRING (so
$substr{hello,-1} is o).

If LENGTH is negative, it instead specifies the number of characters
to omit from the end of STRING (so “$substr{example,2,-2}” is “amp”).
Note that this means that “$substr{STRING,0,N}$substr{STRING,N}” is
“STRING” whether N is positive, negative or zero.

		$suggestion

		if $set{spelling,true} was done before the query was parsed, then
$suggestion will return any suggested spelling corrected version
of the query string. If there are no spelling corrections, it will
return an empty string.

		$terms

		list of matching terms for current hit.

		$thispage

		page number of current page.

		$time

		how long the match took (in seconds) e.g. 0.078534. If no timing
information was available, returns an empty value.

		$topdoc

		first document on current page of hit list (counting from 0)

		$topterms[{N}]

		list of up to N top relevance feedback terms (default 16)

		$transform{REGEXP,SUBST,STRING}

		transform string using Perl-compatible regular expressions. This
command is sort of like the Perl code:

my $string = STRING;
$string =~ s/REGEXP/SUBST/;
print $string;

In SUBST, \1 to \9 are substituted by the 1st to 9th bracket
grouping (or are empty if there is no such bracket grouping). \\
is a literal backslash.

		$truncate{STRING,LEN[,IND[,IND2]]}

		truncate STRING to LEN bytes, but try to break after a word (unless
that would mean truncating to much less than LEN). If we have to
split a word, then IND is appended (if specified). If we have to
truncate (but don’t split a word) then IND2 is appended (if specified).
For example:

$truncate{$field{text},500,..., ...}

		$uniq{LIST}

		remove duplicates from a sorted list

		$unpack{BINARYSTRING}

		converts a 4 byte big-endian binary string to a number, for example:

$date{$unpack{$value{0}}}

		$unstem{TERM}

		maps a stemmed term to a list of the unstemmed forms of it used in
the query

		$upper{TEXT}

		return UTF-8 text TEXT converted to upper case.

		$url{TEXT}

		url encode argument

		$value{VALUENO[,DOCID]}

		returns value number VALUENO for document DOCID. If DOCID
is omitted then the current hit is used (which only works inside
$hitlist).

		$version

		omega version string - e.g. “xapian-omega 1.2.6”

		$weight

		raw document weight of the current hit, as a floating point value
(mostly useful for debugging purposes).

Numeric Operators:

		$add{...}

		add arguments together (if called with one argument, this will convert
it to a string and back, which ensures it is an integer).

		$div{A,B}

		returns int(A / B) (or the text “divide by 0” if B is zero)

		$mod{A,B}

		returns int(A % B) (or the text “divide by 0” if B is zero)

		$max{A,...}

		maximum of the arguments

		$min{A,...}

		minimum of the arguments

$mul{A,B,...}
multiply arguments together

		$muldiv{A,B,C}

		returns int((A * B) / C) (or the text “divide by 0” if C is zero)

		$sub{A,B}

		returns (A - B)

Logical Operators:

		$and{...}

		logical short-cutting “and” of its arguments - evaluates
arguments until it finds an empty one (and returns “”) or
has evaluated them all (returns “true”)

		$eq{A,B}

		returns “true” if A and B are the same, “” otherwise.

		$ge{A,B}

		returns “true” if A is numerically >= B.

		$gt{A,B}

		returns “true” if A is numerically > B.

		$le{A,B}

		returns “true” if A is numerically <= B.

		$lt{A,B}

		returns “true” if A is numerically < B.

		$ne{A,B}

		returns “true” if A and B are not the same, “” if they are.

		$not{A}

		returns “true” for the empty string, “” otherwise.

		$or{...}

		logical short-cutting “or” of its arguments - returns first
non-empty argument

Control:

		$if{COND,THEN[,ELSE]}

		if COND is non-empty, evaluate THEN, otherwise evaluate else
(if present)

		$include{FILE}

		include another OmegaScript file

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/scriptindex.html

 Navigation

 		
 index

 		Xapian docs documentation »

Index scripts

The basic format is one or more field names followed by a colon, followed by
one or more actions. Some actions take an optional or required parameter.
The actions are applied in the specified order to each field listed, and
fields can be listed in several lines.

Here’s an example:

desc1 : unhtml index truncate=200 field=sample
desc2 desc3 desc4 : unhtml index
name : field=caption weight=3 index
ref : field=ref boolean=Q unique=Q
type : field=type boolean=XT

The actions are:

		boolean[=PREFIX]

		index the text as a single boolean term (with prefix PREFIX). If
there’s no text, no term is added. Omega expects certain prefixes to
be used for certain purposes - those starting “X” are reserved for user
applications. Q is reserved for a unique ID term.

		date=FORMAT

		generate terms for date range searching. If FORMAT is “unix”, then the
value is interpreted as a Unix time_t (seconds since 1970). If
FORMAT is “yyyymmdd”, then the value is interpreted as an 8 digit
string, e.g. 20021221 for 21st December 2002. Unknown formats,
and invalid values are ignored at present.

		field[=FIELDNAME]

		add as a field to the Xapian record. FIELDNAME defaults to the field
name in the dumpfile. It is valid to have more than one instance of
a given field: all instances will be processed and stored in the
Xapian record.

		hash[=LENGTH]

		Xapian has a limit on the length of a term. To handle arbitrarily
long URLs as terms, omindex implements a scheme where the end of
a long URL is hashed (short URLs are left as-is). You can use this
same scheme in scriptindex. LENGTH defaults to 239, which if you
index with prefix “U” produces url terms compatible with omindex.

		index[=PREFIX]

		split text into words and index probabilistically (with prefix PREFIX
if specified).

		indexnopos[=PREFIX]

		split text into words and index probabilistically (with prefix PREFIX
if specified), but don’t include positional information in the
database - this makes the database smaller, but phrase searching won’t
work.

		load

		reads the contents of the file using the current text as the filename
and then sets the current text to the contents. If the file can’t be
loaded (not found, wrong permissions, etc) then a diagnostic message is
sent to stderr and the current text is set to empty. If the next
action is truncate, then scriptindex is smart enough to know it only
needs to load the start of a large file.

		lower

		lowercase the text (useful for generating boolean terms)

		spell

		Generate spelling correction data for any index or indexnopos
actions in the remainder of this list of actions.

		truncate=LENGTH

		truncate to at most LENGTH characters, but avoid chopping off a word
(useful for sample and title fields)

		unhtml

		strip out HTML tags

		unique[=PREFIX]

		use the value in this field for a unique ID. If the value is empty,
a warning is issued but nothing else is done. Only one record with
each value of the ID may be present in the index: adding a new record
with an ID which is already present will cause the old record to be
replaced (or deleted if the new record is otherwise empty). You should
also index the field as a boolean field using the same prefix so that
the old record can be found. In Omega, Q is reserved for use as the
prefix of a unique term.

		value=VALUESLOT

		add as a Xapian document value in slot VALUESLOT. Values can be used
for collapsing equivalent documents, sorting the MSet, etc. If you
want to perform numeric sorting, use the valuenumeric action instead.

		valuenumeric=VALUESLOT

		Like value=VALUESLOT, this adds as a Xapian document value in slot
VALUESLOT, but it encodes it for numeric sorting using
Xapian::sortable_serialise(). Values set with this action can be
used for numeric sorting of the MSet.

		weight=FACTOR

		set the weighting factor to FACTOR (an integer) for any index or
indexnopos actions in the remainder of this list of actions. The
default is 1. Use this to add extra weight to titles, keyword fields,
etc, so that words in them are regarded as more important by searches.

Input files:

The data to be indexed is read in from one or more files. Each file has
records separated by a blank line. Each record contains one or more fields of
the form “name=value”. If value contains newlines, these must be escaped by
inserting an equals sign (‘=’) after each newline. Here’s an example record:

id=ghq147
title=Sample Record
value=This is a multi-line
=value. Note how each newline
=is escaped.
format=HTML

Example:

See mbox2omega and mbox2omega.script for an example of how you can generate a
dump file from an external source and write an index script to be used with it.
Try “mbox2omega –help” for more information.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/install.html

 Navigation

 		
 index

 		Xapian docs documentation »

Installing Xapian

Introduction

This document is intended to give a quick guide to how to install
Xapian. You can find more detailed instructions in the INSTALL file
which is in top level directory of each source tree.

Xapian can be built on UNIX systems (including MacOS X), and also
Microsoft Windows systems using GCC with mingw or cygwin, or MSVC.

Packaged binary versions

Pre-built Xapian packages are available for a number of platforms,
including most of the popular Linux distributions and BSD variants, and
also Cygwin and MSVC. If you are using such a platform, you’ll probably
find it easiest to use pre-built packages - it saves having to compile
by hand and you’ll generally get updates automatically.

There are some links on our download
page [http://xapian.org/download] but it’s likely that Xapian packages
are available for platforms we aren’t aware of. Feel free to let us know
and we’ll add a link.

In some cases, the version packaged may be rather old, in which case you
can either request the packager to update, or build from source. If you
find we’re linking to a package which isn’t being updated, please let us
know so we can remove the link.

Installing from Source

Download

The first step is to obtain a copy of the software from the Xapian
download page [http://xapian.org/download].

Unpacking

Use the usual tools to unpack the archives. For example, on a Linux
system:

tar xf xapian-core-<versionnumber>.tar.xz
tar xf xapian-omega-<versionnumber>.tar.xz
tar xf xapian-bindings-<versionnumber>.tar.xz

If tar on your system doesn’t support xz decompression, you can instead use:

xz -dc xapian-core-<versionnumber>.tar.xz|tar xf -
xz -dc xapian-omega-<versionnumber>.tar.xz|tar xf -
xz -dc xapian-bindings-<versionnumber>.tar.xz|tar xf -

These commands should unpack the archives into separate subdirectories
(xapian-core-<versionnumber>, xapian-omega-<versionnumber> and
xapian-bindings-<versionnumber>).

Configuring and building the Xapian library

For full details of the different options available when configuring and
building, read the file “INSTALL” in the top level directory of your
newly unpacked source tree. But in many cases, the following quick
summary is all you need to know.

Building for MSVC is currently handled using a separately maintained set
of makefiles - you can find a link to these on the Xapian download
page [http://xapian.org/download].

Each directory contains a configure script which checks various
features of your system. Assuming this runs successfully, you can then
run make to build the software, and make install to actually
install it. By default, the software installs under /usr/local, but
you can change this by passing --prefix=/path/to/install to
configure. So for example, you might use the following series of
commands to build and install xapian-core under /opt:

cd xapian-core-<version>
./configure --prefix=/opt
make
sudo make install

If you don’t have root access to install Xapian, you can specify a
prefix in your home directory, for example:

./configure --prefix=/home/jenny/xapian-install

Configuring and building Omega

Omega can be built in almost exactly the same way as the core library.
Omega’s configure script will try to locate your Xapian installation
by looking for the xapian-config script, which is installed as
<prefix>/bin/xapian-config. If <prefix>/bin/xapian-config isn’t
on your PATH, or you have multiple installations of Xapian (perhaps
a debug and non-debug build, or two different versions), you can specify
a xapian-config to use by passing XAPIAN_CONFIG on the configure
command line, as shown below:

cd xapian-omega-<version>
./configure --prefix=/opt XAPIAN_CONFIG=/opt/bin/xapian-config
make
sudo make install

Note that we use GNU libtool, which will set the runtime library search
path if your Xapian installation isn’t in the dynamic linker search
path, so there’s no need to mess around with setting
LD_LIBRARY_PATH.

Configuring and building Xapian-bindings

Xapian-bindings is built much like Omega. One thing to be aware of is
that by default we install the built bindings where they need to go to
work without further intervention, so they may get installed under
/usr even if the prefix is elsewhere. See the INSTALL file for
xapian-bindings for details of how you can override this, and what steps
you’ll need to take to run scripts which use the bindings if you do.

Building from git

If you wish to help develop Xapian, read how to build from the Xapian
git repository [http://xapian.org/bleeding].

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python3/docs/examples.html

 Navigation

 		
 index

 		Xapian docs documentation »

Examples

simplesearch.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

		#!/usr/bin/env python
#
Simple command-line search script.
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2007,2009,2013 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian

We require at least two command line arguments.
if len(sys.argv) < 3:
 print("Usage: %s PATH_TO_DATABASE QUERY" % sys.argv[0], file=sys.stderr)
 sys.exit(1)

try:
 # Open the database for searching.
 database = xapian.Database(sys.argv[1])

 # Start an enquire session.
 enquire = xapian.Enquire(database)

 # Combine the rest of the command line arguments with spaces between
 # them, so that simple queries don't have to be quoted at the shell
 # level.
 query_string = str.join(' ', sys.argv[2:])

 # Parse the query string to produce a Xapian::Query object.
 qp = xapian.QueryParser()
 stemmer = xapian.Stem("english")
 qp.set_stemmer(stemmer)
 qp.set_database(database)
 qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
 query = qp.parse_query(query_string)
 print("Parsed query is: %s" % str(query))

 # Find the top 10 results for the query.
 enquire.set_query(query)
 matches = enquire.get_mset(0, 10)

 # Display the results.
 print("%i results found." % matches.get_matches_estimated())
 print("Results 1-%i:" % matches.size())

 for m in matches:
 print("%i: %i%% docid=%i [%s]" % (m.rank + 1, m.percent, m.docid, m.document.get_data().decode('utf-8')))

except Exception as e:
 print("Exception: %s" % str(e), file=sys.stderr)
 sys.exit(1)

simpleindex.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

		#!/usr/bin/env python
#
Index each paragraph of a text file as a Xapian document.
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2007,2013,2014 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian
import string

if len(sys.argv) != 2:
 print("Usage: %s PATH_TO_DATABASE" % sys.argv[0], file=sys.stderr)
 sys.exit(1)

try:
 # Open the database for update, creating a new database if necessary.
 database = xapian.WritableDatabase(sys.argv[1], xapian.DB_CREATE_OR_OPEN)

 indexer = xapian.TermGenerator()
 stemmer = xapian.Stem("english")
 indexer.set_stemmer(stemmer)

 para = ''
 try:
 for line in sys.stdin:
 line = line.strip()
 if line == '':
 if para != '':
 # We've reached the end of a paragraph, so index it.
 doc = xapian.Document()
 doc.set_data(para)

 indexer.set_document(doc)
 indexer.index_text(para)

 # Add the document to the database.
 database.add_document(doc)
 para = ''
 else:
 if para != '':
 para += ' '
 para += line
 except StopIteration:
 pass

except Exception as e:
 print("Exception: %s" % str(e), file=sys.stderr)
 sys.exit(1)

simpleexpand.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

		#!/usr/bin/env python
#
Simple example script demonstrating query expansion.
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2006,2007,2012,2013,2014 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian

We require at least two command line arguments.
if len(sys.argv) < 3:
 print("Usage: %s PATH_TO_DATABASE QUERY [-- [DOCID...]]" % sys.argv[0], file=sys.stderr)
 sys.exit(1)

try:
 # Open the database for searching.
 database = xapian.Database(sys.argv[1])

 # Start an enquire session.
 enquire = xapian.Enquire(database)

 # Combine command line arguments up to "--" with spaces between
 # them, so that simple queries don't have to be quoted at the shell
 # level.
 query_string = sys.argv[2]
 index = 3
 while index < len(sys.argv):
 arg = sys.argv[index]
 index += 1
 if arg == '--':
 # Passed marker, move to parsing relevant docids.
 break
 query_string += ' '
 query_string += arg

 # Create an RSet with the listed docids in.
 reldocs = xapian.RSet()
 for index in range(index, len(sys.argv)):
 reldocs.add_document(int(sys.argv[index]))

 # Parse the query string to produce a Xapian::Query object.
 qp = xapian.QueryParser()
 stemmer = xapian.Stem("english")
 qp.set_stemmer(stemmer)
 qp.set_database(database)
 qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
 query = qp.parse_query(query_string)

 if not query.empty():
 print("Parsed query is: %s" % str(query))

 # Find the top 10 results for the query.
 enquire.set_query(query)
 matches = enquire.get_mset(0, 10, reldocs)

 # Display the results.
 print("%i results found." % matches.get_matches_estimated())
 print("Results 1-%i:" % matches.size())

 for m in matches:
 print("%i: %i%% docid=%i [%s]" % (m.rank + 1, m.percent, m.docid, m.document.get_data()))

 # Put the top 5 (at most) docs into the rset if rset is empty
 if reldocs.empty():
 rel_count = 0
 for m in matches:
 reldocs.add_document(m.docid)
 rel_count += 1
 if rel_count == 5:
 break

 # Get the suggested expand terms
 eterms = enquire.get_eset(10, reldocs)
 print("%i suggested additional terms" % eterms.size())
 for k in eterms:
 print("%s: %f" % (k.term, k.weight))

except Exception as e:
 print("Exception: %s" % str(e), file=sys.stderr)
 sys.exit(1)

simplematchdecider.py

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

		#!/usr/bin/env python
#
Simple command-line match decider example
#
Copyright (C) 2003 James Aylett
Copyright (C) 2004,2007,2009,2013 Olly Betts
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

import sys
import xapian

This example runs a query like simplesearch does, but uses a MatchDecider
(mymatchdecider) to discard any document for which value 0 is equal to
the string passed as the second command line argument.

if len(sys.argv) < 4:
 print("Usage: %s PATH_TO_DATABASE AVOID_VALUE QUERY" % sys.argv[0], file=sys.stderr)
 sys.exit(1)

class mymatchdecider(xapian.MatchDecider):
 def __init__(self, avoidvalue):
 xapian.MatchDecider.__init__(self)
 self.avoidvalue = avoidvalue

 def __call__(self, doc):
 return doc.get_value(0) != self.avoidvalue

try:
 # Open the database for searching.
 database = xapian.Database(sys.argv[1])

 # Start an enquire session.
 enquire = xapian.Enquire(database)

 # Combine the rest of the command line arguments with spaces between
 # them, so that simple queries don't have to be quoted at the shell
 # level.
 avoid_value = sys.argv[2]
 query_string = str.join(' ', sys.argv[3:])

 # Parse the query string to produce a Xapian::Query object.
 qp = xapian.QueryParser()
 stemmer = xapian.Stem("english")
 qp.set_stemmer(stemmer)
 qp.set_database(database)
 qp.set_stemming_strategy(xapian.QueryParser.STEM_SOME)
 query = qp.parse_query(query_string)
 print("Parsed query is: %s" % str(query))

 # Find the top 10 results for the query.
 enquire.set_query(query)
 mdecider = mymatchdecider(avoid_value)
 matches = enquire.get_mset(0, 10, None, mdecider)

 # Display the results.
 print("%i results found." % matches.get_matches_estimated())
 print("Results 1-%i:" % matches.size())

 for m in matches:
 print("%i: %i%% docid=%i [%s]" % (m.rank + 1, m.percent, m.docid, m.document.get_data()))

except Exception as e:
 print("Exception: %s" % str(e), file=sys.stderr)
 sys.exit(1)

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/admin_notes.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Administrator’s Guide

Table of contents

		Xapian Administrator’s Guide
		Introduction

		Databases
		Atomic modifications

		Single writer, multiple reader

		Revision numbers

		Network file systems

		Which database format to use?

		Can I put other files in the database directory?

		Backup Strategies
		Summary

		Detail

		Inspecting a database

		Database maintenance
		Compacting a database

		Merging databases

		Checking database integrity

		Fixing corrupted databases

		Converting a pre-1.1.4 chert database to a chert database

		Converting a flint database to a chert database

		Converting a quartz database to a flint database

		Converting a 0.9.x flint database to work with 1.0.y

Introduction

This document is intended to provide general hints, tips and advice to
administrators of Xapian systems. It assumes that you have installed Xapian
on your system, and are familiar with the basics of creating and searching
Xapian databases.

The intended audience is system administrators who need to be able to perform
general management of a Xapian database, including tasks such as taking
backups and optimising performance. It may also be useful introductory
reading for Xapian application developers.

The document is up-to-date for Xapian version 1.3.0 (probably!)

Databases

Xapian databases hold all the information needed to perform searches in a set
of tables. The following tables always exist:

		A posting list table, which holds a list of all the documents indexed by
each term in the database, and also chunked streams of the values in each
value slot.

		A record table, which holds the document data associated with each document
in the database.

		A termlist table, which holds a list of all the terms which index each
document, and also the value slots used in each document.

And the following optional tables exist only when there is data to store in
them:

		A position list table, which holds a list of all the word positions in each
document which each term occurs at.

		A spelling table, which holds data for suggesting spelling corrections.

		A synonym table, which holds a synonym dictionary.

Each of the tables is held in a separate file, allowing an administrator to
see how much data is being used for each of the above purposes. It is not
always necessary to fully populate these tables: for example, if phrase
searches are never going to be performed on the database, it is not necessary
to store any positionlist information.

If you look at a Xapian database, you will see that each of these tables
actually uses 2 or 3 files. For example, for a “chert” format database the
termlist table is stored in the files “termlist.baseA”, “termlist.baseB”
and “termlist.DB”.

The ”.DB” file actually stores the data, and is structured as a tree of
blocks, which have a default size of 8KB (though this can be set, either
through the Xapian API, or with some of the tools detailed later in this
document).

The ”.baseA” and ”.baseB” files are used to keep track of where to start
looking for data in the ”.DB” file (the root of the tree), and which blocks are
in use. Often only one of the ”.baseA” and ”.baseB” files will be present;
each of these files refers to a revision of the database, and there may be more
than one valid revision of the database stored in the ”.DB” file at once.

Changing the blocksize may have performance implications, but it is hard to
tell whether these will be positive or negative for a particular combination
of hardware and software without doing some profiling.

Atomic modifications

Xapian ensures that all modifications to its database are performed
atomically. This means that:

		From the point of view of a separate process (or a separate database object
in the same process) reading the database, all modifications made to a
database are invisible until the modifications is committed.

		The database on disk is always in a consistent state.

		If the system is interrupted during a modification, the database should
always be left in a valid state. This applies even if the power is cut
unexpectedly, as long as the disk does not become corrupted due to hardware
failure.

Committing a modification requires several calls to the operating system to
make it flush any cached modifications to the database to disk. This is to
ensure that if the system fails at any point, the database is left in a
consistent state. Of course, this is a fairly slow process (since the system
has to wait for the disk to physically write the data), so grouping many
changes together will speed up the throughput considerably.

Many modifications can be explicitly grouped into a single transaction, so
that lots of changes are applied at once. Even if an application doesn’t
explicitly protect modifications to the database using transactions, Xapian
will group modifications into transactions, applying the modifications in
batches.

Note that it is not currently possible to extend Xapian’s transactions to
cover multiple databases, or to link them with transactions in external
systems, such as an RDBMS.

Finally, note that it is possible to compile Xapian such that it doesn’t make
modifications in an atomic manner, in order to build very large databases more
quickly (search the Xapian mailing list archives for “DANGEROUS” mode for more
details). This isn’t yet integrated into standard builds of Xapian, but may
be in future, if appropriate protections can be incorporated.

Single writer, multiple reader

Xapian implements a “single writer, multiple reader” model. This means that,
at any given instant, there is only permitted to be a single object modifying
a database, but there may (simultaneously) be many objects reading the
database at once.

Xapian enforces this restriction using by having a writer lock the database.
Each Xapian database directory contains a lock file named
flintlock (we’ve kept the same name as flint used, since the locking
technique is the same).

This lock-file will always exist, but will be locked using fcntl() when the
database is open for writing. Because of the semantics of fcntl() locking,
for each WritableDatabase opened we spawn a child process to hold the lock,
which then exec-s cat, so you will see a cat subprocess of any writer
process in the output of ps, top, etc.

If a writer exits without being given a chance to clean up (for example, if the
application holding the writer is killed), the fcntl() lock will be
automatically released by the operating system. Under Microsoft Windows, we
use a different locking technique which doesn’t require a child process, but
also means the lock is released automatically when the writing process exits.

Revision numbers

Xapian databases contain a revision number. This is essentially a count of
the number of modifications since the database was created, and is needed to
implement the atomic modification functionality. It is stored as a 32 bit
integer, so there is a chance that a very frequently updated database could
cause this to overflow. The consequence of such an overflow would be to throw
an exception reporting that the database has run out of revision numbers.

This isn’t likely to be a practical problem, since it would take nearly a year
for a database to reach this limit if 100 modifications were committed every
second, and no normal Xapian system will commit more than once every few
seconds. However, if you are concerned, you can use the xapian-compact
tool to make a fresh copy of the database with the revision number set to 1.

The revision number of each table can be displayed by the xapian-check
tool.

Network file systems

Xapian should work correctly over a network file system. However, there are
various potential issues with such file systems, so we recommend
extensive testing of your particular network file system before deployment.

Be warned that Xapian is heavily I/O dependent, and therefore performance over
a network file system is likely to be slow unless you’ve got a very well tuned
setup.

Xapian needs to be able to lock a file in a database directory when
modifications are being performed. On some network files systems (e.g., NFS)
this requires a lock daemon to be running.

Which database format to use?

As of release 1.2.0, you should generally use the chert format (which is now
the default).

Support for the pre-1.0 quartz format (deprecated in 1.0) was removed in 1.1.0.
See below for how to convert a quartz database to a flint one.

The flint backend (the default for 1.0) is still supported by 1.2.x, but
deprecated - only use it if you already have flint databases; and plan to
migrate away.

There’s also a development backend called glass. The main distinguishing
feature of this is that the format may change incompatibly from time to time.
It passes Xapian’s extensive testsuite, but has seen less real world use
than chert.

Can I put other files in the database directory?

If you wish to store meta-data or other information relating to the Xapian
database, it is reasonable to wish to put this in files inside the Xapian
database directory, for neatness. For example, you might wish to store a list
of the prefixes you’ve applied to terms for specific fields in the database.

Current Xapian backends don’t do anything
which will break this technique, so as long as you don’t choose a filename
that Xapian uses itself, there should be no problems. However, be aware that
new versions of Xapian may use new files in the database directory, and it is
also possible that new backend formats may not be compatible with the
technique (e.g., it is possible that a future backend could store its entire
database in a single file, not in a directory).

Backup Strategies

Summary

		The simplest way to perform a backup is to temporarily halt modifications,
take a copy of all files in the database directory, and then allow
modifications to resume. Read access can continue while a backup is being
taken.

		If you have a filesystem which allows atomic snapshots to be taken of
directories (such as an LVM filesystem), an alternative strategy is to take
a snapshot and simply copy all the files in the database directory to the
backup medium. Such a copy will always be a valid database.

		Progressive backups are not easily possible; modifications are typically
spread throughout the database files.

Detail

Even though Xapian databases are often automatically generated from source
data which is stored in a reliable manner, it is usually desirable to keep
backups of Xapian databases being run in production environments. This is
particularly important in systems with high-availability requirements, since
re-building a Xapian database from scratch can take many hours. It is also
important in the case where the data stored in the database cannot easily be
recovered from external sources.

Xapian databases are managed such that at any instant in time, there is at
least one valid revision of the database written to disk (and if there are
multiple valid revisions, Xapian will always open the most recent).
Therefore, if it is possible to take an instantaneous snapshot of all the
database files (for example, on an LVM filesystem), this snapshot is suitable
for copying to a backup medium. Note that it is not sufficient to take a
snapshot of each database file in turn - the snapshot must be across all
database files simultaneously. Otherwise, there is a risk that the snapshot
could contain database files from different revisions.

If it is not possible to take an instantaneous snapshot, the best backup
strategy is simply to ensure that no modifications are committed during the
backup procedure. While the simplest way to implement this may be to stop
whatever processes are used to modify the database, and ensure that they close
the database, it is not actually necessary to ensure that no writers are open
on the database; it is enough to ensure that no writer makes any modification
to the database.

Because a Xapian database can contain more than one valid revision of the
database, it is actually possible to allow a limited number of modifications
to be performed while a backup copy is being made, but this is tricky and we
do not recommend relying on it. Future versions of Xapian are likely to
support this better, by allowing the current revision of a database to be
preserved while modifications continue.

Progressive backups are not recommended for Xapian databases: Xapian database
files are block-structured, and modifications are spread throughout the
/database file. Therefore, a progressive backup tool will not be able to take
a backup by storing only the new parts of the database. Modifications will
normally be so extensive that most parts of the database have been modified,
however, if only a small number of modifications have been made, a binary diff
algorithm might make a usable progressive backup tool.

Inspecting a database

When designing an indexing strategy, it is often useful to be able to check
the contents of the database. Xapian includes a simple command-line program,
xapian-delve, to allow this (prior to 1.3.0, xapian-delve was usually
called delve, though some packages were already renaming it).

For example, to display the list of terms in document “1” of the database
“foo”, use:

xapian-delve foo -r 1

It is also possible to perform simple searches of a database. Xapian includes
another simple command-line program, “quest”, to support this. “quest” is
only able to search for un-prefixed terms, the query string must be quoted to
protect it from the shell. To search the database “foo” for the phrase “hello
world”, use:

quest -d foo '"hello world"'

If you have installed the “Omega” CGI application built on Xapian, this can
also be used with the built-in “godmode” template to provide a web-based
interface for browsing a database. See Omega’s documentation for more details
on this.

Database maintenance

Compacting a database

Xapian databases normally have some spare space in each block to allow
new information to be efficiently slotted into the database. However, the
smaller a database is, the faster it can be searched, so if there aren’t
expected to be many further modifications, it can be desirable to compact the
database.

Xapian includes a tool called “xapian-compact” for compacting databases.
This tool makes a copy of a database, and takes advantage of
the sorted nature of the source Xapian database to write the database out
without leaving spare space for future modifications. This can result in a
large space saving.

The downside of compaction is that future modifications may take a little
longer, due to needing to reorganise the database to make space for them.
However, modifications are still possible, and if many modifications are made,
the database will gradually develop spare space.

There’s an option (“-F”) to perform a “fuller” compaction. This option
compacts the database as much as possible, but it violates the design of the
Btree format slightly to achieve this, so it is not recommended if further
modifications are at all likely in future. If you do need to modify a “fuller”
compacted database, we recommend you run xapian-compact on it without “-F”
first.

While taking a copy of the database, it is also possible to change the
blocksize. If you wish to profile search speed with different blocksizes,
this is the recommended way to generate the different databases (but remember
to compact the original database as well, for a fair comparison).

Merging databases

When building an index for a very large amount of data, it can be desirable to
index the data in smaller chunks (perhaps on separate machines), and then
merge the chunks together into a single database. This can be performed using
the “xapian-compact” tool, simply by supplying several source database paths.

Normally, merging works by reading the source databases in parallel, and
writing the contents in sorted order to the destination database. This will
work most efficiently if excessive disk seeking can be avoided; if you have
several disks, it may be worth placing the source databases and the
destination database on separate disks to obtain maximum speed.

The xapian-compact tool supports an additional option, --multipass,
which is useful when merging more than three databases. This will cause the
postlist tables to be grouped and merged into temporary tables, which are then
grouped and merged, and so on until a single postlist table is created, which
is usually faster, but requires more disk space for the temporary files.

Checking database integrity

Xapian includes a command-line tool to check that a database is
self-consistent. This tool, “xapian-check”, runs through the entire database,
checking that all the internal nodes are correctly connected. It can also be
used on a single table, for example, this command will check the termlist table
of database “foo”:

xapian-check foo/termlist.DB

Fixing corrupted databases

The “xapian-check” tool is capable of fixing corrupted databases in certain
limited situations. Currently it only supports this for chert, where it is
capable of:

		Regenerating a damaged iamchert file (if you’ve lost yours completely
just create an invalid one, e.g. with touch iamchert).

		Regenerating damaged or lost base files from the corresponding DB files.
This was developed for the scenario where the database is freshly compacted
but should work provided the last update was cleanly applied. If the last
update wasn’t actually committed, then it is possible that it will try to
pick the root block for the partial update, which isn’t what you want.
If you are in this situation, come and talk to us - with a testcase we
should be able to make it handle this better.

To fix such issues, run xapian-check like so:

xapian-check /path/to/database F

Converting a pre-1.1.4 chert database to a chert database

The chert format changed in 1.1.4 - at that point the format hadn’t been
finalised, but a number of users had already deployed it, and it wasn’t hard
to write an updater, so we provided one called xapian-chert-update which makes
a copy with the updated format:

xapian-chert-update SOURCE DESTINATION

It works much like xapian-compact so should take a similar amount of time (and
results in a compact database). The initial version had a few bugs, so use
xapian-chert-update from Xapian 1.2.5 or later.

The xapian-chert-update utility was removed in Xapian 1.3.0, so you’ll need to
install Xapian 1.2.x to use it.

Converting a flint database to a chert database

It is possible to convert a flint database to a chert database by installing
Xapian 1.2.x (since this has support for both flint and chert)
using the “copydatabase” example program included with Xapian. This is a
lot slower to run than “xapian-compact”, since it has to perform the
sorting of the term occurrence data from scratch, but should be faster than a
re-index from source data since it doesn’t need to perform the tokenisation
step. It is also useful if you no longer have the source data available.

The following command will copy a database from “SOURCE” to “DESTINATION”,
creating the new database at “DESTINATION” as a chert database:

copydatabase SOURCE DESTINATION

By default copydatabase will renumber your documents starting with docid 1.
If the docids are stored in or come from some external system, you should
preserve them by using the –no-renumber option (new in Xapian 1.2.5):

copydatabase --no-renumber SOURCE DESTINATION

Converting a quartz database to a flint database

It is possible to convert a quartz database to a flint database by installing
Xapian 1.0.x (since this has support for both quartz and flint)
and using the “copydatabase” example program included with Xapian. This is a
lot slower to run than “xapian-compact”, since it has to perform the
sorting of the term occurrence data from scratch, but should be faster than a
re-index from source data since it doesn’t need to perform the tokenisation
step. It is also useful if you no longer have the source data available.

The following command will copy a database from “SOURCE” to “DESTINATION”,
creating the new database at “DESTINATION” as a flint database:

copydatabase SOURCE DESTINATION

Converting a 0.9.x flint database to work with 1.0.y

In 0.9.x, flint was the development backend.

Due to a bug in the flint position list encoding in 0.9.x which made flint
databases non-portable between platforms, we had to make an incompatible
change in the flint format. It’s not easy to write an upgrader, but you
can convert a database using the following procedure (although it might
be better to rebuild from scratch if you want to use the new UTF-8 support
in Xapian::QueryParser, Xapian::Stem, and Xapian::TermGenerator).

Run the following command in your Xapian 0.9.x installation to copy your
0.9.x flint database “SOURCE” to a new quartz database “INTERMEDIATE”:

copydatabase SOURCE INTERMEDIATE

Then run the following command in your Xapian 1.0.y installation to copy
your quartz database to a 1.0.y flint database “DESTINATION”:

copydatabase INTERMEDIATE DESTINATION

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/stemming.html

 Navigation

 		
 index

 		Xapian docs documentation »

Stemming Algorithms

Xapian uses the Snowball Stemming
Algorithms [http://snowball.tartarus.org/]. At present, these support
Armenian, Basque, Catalan, Danish, Dutch, English, Finnish, French, German,
Hungarian, Italian, Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish,
and Turkish.

There are also implementations of Lovins’ English stemmer, Porter’s
original English stemmer, the Kraaij-Pohlmann Dutch stemmer, and a
variation of the German stemmer which normalises umlauts.

We’d like to add stemmers for more languages - see the Snowball site for
information on how to contribute.

What is a stemming algorithm?

A stemming algorithm is a process of linguistic normalisation, in which
the variant forms of a word are reduced to a common form, for example,

connection
connections
connective ---> connect
connected
connecting

It is important to appreciate that we use stemming with the intention of
improving the performance of IR systems. It is not an exercise in
etymology or grammar. In fact from an etymological or grammatical
viewpoint, a stemming algorithm is liable to make many mistakes. In
addition, stemming algorithms - at least the ones presented here - are
applicable to the written, not the spoken, form of the language.

For some of the world’s languages, Chinese for example, the concept of
stemming is not applicable, but it is certainly meaningful for the many
languages of the Indo-European group. In these languages words tend to
be constant at the front, and to vary at the end:

 -ion
 -ions
connect-ive
 -ed
 -ing

The variable part is the ending, or suffix. Taking these endings
off is called suffix stripping or stemming, and the residual part
is called the stem.

Endings

Another way of looking at endings and suffixes is to think of the suffix
as being made up of a number of endings. For example, the French word

confirmatives

can be thought of as confirm with a chain of endings,

 -atif (adjectival ending - morphological)
plus -e (feminine ending - grammatical)
plus -s (plural ending - grammatical)

-atif can also be thought of as -ate plus -if. Note that the addition of
endings can cause respellings, so -e changes preceding f to v.

Endings fall into two classes, grammatical and morphological. The
addition of -s in English to make a plural is an example of a
grammatical ending. The word remains of the same type. There is usually
only one dictionary entry for a word with all its various grammatical
endings. Morphological endings create new types of word. In English -ise
or -ize makes verbs from nouns (demon, demonise), -ly makes
adverbs from adjectives (foolish, foolishly), and so on. Usually
there are separate dictionary endings for these creations.

Language knowledge

It is much easier to write a stemming algorithm for a language when you
are familiar with it. If you are not, you will probably need to work
with someone who is, and who can also explain details of grammar to you.
Best is a professional teacher or translator. You certainly don’t need
to have a world authority on the grammar of the language. In fact too
much expertise can get in the way when it comes to the very practical
matter of writing the stemming algorithm.

Vocabularies

Each stemmer is issued with a vocabulary in data/voc.txt, and its
stemmed form in data/voc.st. You can use these for testing and
evaluation purposes.

Raw materials

A conventional grammar of a language will list all the grammatical
endings, and will often summarise most of the morphological endings. A
grammar, plus a dictionary, are therefore basic references in the
development of a stemming algorithm, although you can dispense with them
if you have an excellent knowledge of the language. What you cannot
dispense with is a vocabulary to try the algorithm out on as it is being
developed. Assemble about 2 megabytes of text. A mix of sources is best,
and literary prose (conventional novels) usually gives an ideal mix of
tenses, cases, persons, genders etc. Obviously the texts should be in
some sense ‘contemporary’, but it is an error to exclude anything
slightly old. The algorithm itself may well get applied to older texts
once it has been written. For English, the works of Shakespeare in the
customary modern spelling make a good test vocabulary.

From the source text derive a control vocabulary of words in sorted
order. Sample vocabularies in this style are part of our Open Source
release. If you make a small change to the stemming algorithm you should
have a procedure that presents the change as a three column table:
column one is the control vocabulary, column 2 the stemmed equivalent,
and column 3 the stemmed equivalent after the change has been made to
the algorithm. The effects of the change can be evaluated by looking at
the differences between columns two and three.

The first job is to come up with a list of endings. This can be done by
referring to the grammar, the dictionary, and also by browsing through
the control vocabulary.

Rules for removing endings

If a word has an ending, E, when should E be removed? Various criteria
come into play here. One is the knowledge we have about the word from
other endings that might have been removed. If a word ends with a
grammatical verb ending, and that has been removed, then we have a verb
form, and the only further endings to consider are morphological endings
that create verbs from other word types. At this level the system of
endings gives rise to a small state table, which can be followed in
devising the algorithm. In Latin derived languages, there is a state
table of morphological endings that roughly looks like this:

 -IC (adj) -+-> -ATION (noun)
 +-> -ITY (noun)
 +-> -MENT (adv)
 \-> -AT (verb) -+-> -IV (adj) -+-> -ITY (noun)
 | \-> -MENT (adv)
 \-> -OR (noun)

-ABLE (adj) -+-> -ITY (noun)
 \-> -MENT (adv)

 -OUS (adj) ---> -MENT (adv)

The ending forms take different values in different languages. In
French, -OR becomes -eur (m.) or -rice (f.), -AT disappears into
the infinitive form of a verb. In English, -MENT becomes -ly, and
then one can recognise,

-IC-ATION fortification
-IC-ITY electricity
-IC-MENT fantastically
-AT-IV contemplative
-AT-OR conspirator
-IV-ITY relativity
-IV-MENT instinctively
-ABLE-ITY incapability
-ABLE-MENT charitably
-OUS-MENT famously

Trios, -IC-AT-IV etc., also occur, but sequences of length four,
-IC-AT-IV-ITY and -IC-AT-IV-MENT, are absent (or occur very rarely).

Sometimes the validity of an ending depends on the immediately preceding
group of letters. In Italian, for example, certain pronouns and pronoun
groups attach to present participle and infinitive forms of verbs, for
example,

scrivendole = scrivendo (writing) + le (to her)
mandarglielo = mandare (to give) + glielo (it to him)

If E is the ending, the possible forms are -andoE, -endoE, -arE, -erE,
-irE, so E is removed in the context -Xndo or Yr, where X is a or e, and
Y is a or e or i. See the attached_pronoun procedure in the Italian
stemmer.

The most useful criterion for removing an ending, however, is to base
the decision on the syllable length of the stem that will remain. This
idea was first used in the English stemming algorithm, and has been
found to be applicable in the other stemming algorithms too. If C stands
for a sequence of consonants, and V for a sequence of vowels, any word
can be analysed as,

[C] V C ... V C [V]

where [..] indicates arbitrary presence, and V C ... V C means V C
repeated zero or more times. We can find successive positions 0, 1, 2
... in a word corresponding to each vowel-consonant stretch V C,

t h u n d e r s t r i c k e n
 0 1 2 3 4

The closer E is to the beginning of the word, the more unwilling we
should be remove it. So we might have a rule to remove E if at is after
position 2, and so on.

Developing the algorithm

Build the algorithm up bit by bit, trying out a small number of ending
removals at a time. For each new ending plus rule added, decide whether,
on average, the stemming process is improved or degraded. If it is
degraded the rule is unhelpful and can be discarded.

This sounds like common sense, but it is actually very easy to fall into
the trap of endlessly elaborating the rules without looking at their
true effect. What you find eventually is that you can be improving
performance in one area of the vocabulary, while causing a similar
degradation of performance in another area. When this happens
consistently it is time to call a halt to development and to regard the
stemming algorithm as finished.

It is important to realise that the stemming process cannot be made
perfect. For example, in French, the simple verb endings -ons and -ent
of the present tense occur repeatedly in other contexts. -ons is the
plural form of all nouns ending -on, and -ent is also a common noun
ending. On balance it is best not to remove these endings. In practice
this affects -ent verb endings more than -ons verb endings, since -ent
endings are commoner. The result is that verbs stem not to a single
form, but to a much smaller number of forms (three), among which the
form given by the true stem of the verb is by far the commonest.

If we define errors A and B by,

		error A: removing an ending when it is not an ending

		error B: not removing an ending when it is an ending

Then removing -ent leads to error A; not removing -ent leads to error B.
We must adopt the rule that minimises the number of errors - not the
rule that appears to be the most elegant.

Irregular forms

Linguistic irregularities slip through the net of a stemming algorithm.
The English stemmer stems cows to cow, but does not stem oxen
to ox. In reality this matters much less than one might suppose. In
English, the irregular plurals tend to be of things that were common in
Anglo-Saxon England: oxen, sheep, mice, dice - and lice. Men, women and
children are of course common today, but the very commonness of these
words makes them of less importance in IR systems. Similar remarks may
be said about irregular verbs in English, the total number of which is
around 150. Here, the fact that verbs are used perhaps rather less than
nouns and adjectives in IR queries helps account for the unimportance of
verb irregularities in IR performance. There are in English more
significant irregularities in morphological changes such as receive
to reception, decide to decision etc., which correspond,
ultimately, to irregularities in the Latin verbs from which these words
derive. But again working IR systems are rarely upset by lack of
resolution of these forms.

An irregularity of English which does cause a problem is the word
news. It is now a singular noun, and is never regarded as the plural
of new. This, and a few more howlers, are placed in a table,
irregular_forms, in the English stemming algorithm. Similar tables
are provided in the other stemming algorithms, with some provisional
entries. The non-English stemming algorithms have not been used enough
for a significant list of irregular forms to emerge, but as they do,
they can be placed in the irregular_forms table.

Using stemming in IR

In earlier implementations of IR systems, the words of a text were
usually stemmed as part of the indexing process, and the stemmed forms
only held in the main IR index. The words of each incoming query would
then be stemmed similarly. When the index terms were seen by the user,
for example during query expansion, they would be seen in their stemmed
form. It was important therefore that the stemmed form of a word should
not be too unfamiliar in appearance. A user will be comfortable with
seeing apprehend, which stands for apprehending, apprehended as
well as apprehend. More problematical is apprehens, standing for
apprehension, apprehensive etc., but even so, a trained user would
not have a problem with this. In fact all the Xapian stemming algorithms
are built on the assumption that it leave stemmed forms which it would
not be embarrassing to show to real users, and we suggest that new
stemming algorithms are designed with this criterion in mind.

A superior approach is to keep each word, W, and its stemmed form,
s(W), as a two-way relation in the IR system. W is held in the index
with its own posting list. s(W) could have its separate posting list,
but this would be derivable from the class of words that stem to s(W).
The important thing is to have the W ↔ s(W) relation. From W we
can derive s(W), the stemmed form. From a stemmed form s(W) we can
derive W plus the other words in the IR system which stem to s(W).
Any word can then be searched on either stemmed or unstemmed. If the
stemmed form of a word needs to be shown to the user, it can be
represented by the commonest among the words which stem to that form.

Stopwords

It has been traditional in setting up IR systems to discard the very
commonest words of a language - the stopwords - during indexing. A more
modern approach is to index everything, which greatly assists searching
for phrases for example. Stopwords can then still be eliminated from the
query as an optional style of retrieval. In either case, a list of
stopwords for a language is useful.

Getting a list of stopwords can be done by sorting a vocabulary of a
text corpus for a language by frequency, and going down the list picking
off words to be discarded.

The stopword list connects in various ways with the stemming algorithm:

The stemming algorithm can itself be used to detect and remove
stopwords. One would add into the irregular_forms table something
like this,

"", /* null string */

"am/is/are/be/being/been/" /* BE */
"have/has/having/had/" /* HAD */
"do/does/doing/did/" /* DID */
... /* multi-line string */

so that the words am, is etc. map to the null string (or some
other easily recognised value).

Alternatively, stopwords could be removed before the stemming algorithm
is applied, or after the stemming algorithm is applied. In this latter
case, the words to be removed must themselves have gone through the
stemmer, and the number of distinct forms will be greatly reduced as a
result. In Italian for example, the four forms

questa queste questi questo

(meaning that) all stem to

quest

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/scalability.html

 Navigation

 		
 index

 		Xapian docs documentation »

Scalability

People often want to know how Xapian will scale. The short answer is
“very well” - an early version of the software powered the (now defunct)
Webtop search engine, which offered a search over around 500 million web
pages (around 1.5 terabytes of database files). Searches took less than
a second.

In terms of current deployments, gmane [http://search.gmane.org/]
indexes and searches nearly 100 million mail messages on a single server
at the time of writing (2012), and we’ve had user reports of systems with
more than 250 million documents.

Benchmarking

One effect to be aware of when designing benchmarks is that queries will
be a lot slower when nothing is cached. So the first few queries on a
database which hasn’t been searched recently will be unrepresentatively
slow compared to the typical case.

In real use, pretty much all the non-leaf blocks from the B-trees being
used for the search will be cached pretty quickly, as well as many
commonly used leaf blocks.

General Scalability Considerations

In a large search application, I/O will end up being the limiting
factor. So you want a RAID setup optimised for fast reading, lots of RAM
in the box so the OS can cache lots of disk blocks (the access patterns
typically mean that you only need to cache a few percent of the database
to eliminate most disk cache misses).

It also means that reducing the database size is usually a win. The
Chert backend compresses the information in the tables in ways which
work well given the nature of the data but aren’t too expensive to
unpack (e.g. lists of sorted docids are stored as differences with
smaller values encoded in fewer bytes). There is further potential for
improving the encodings used.

Another way to reduce disk I/O is to run databases through
xapian-compact. The Btree manager usually leaves some spare space in
each block so that updates are more efficient (though there are
heuristics which will fill blocks fuller when they detect a long
sequence of sequential insertions, which means adding documents to the
end of an empty database will produce fairly compact tables, apart from
the postlist table). Compacting makes all blocks as full as possible,
and so reduces the size of the database. It also produces a database
with revision 1 which is inherently faster to search. The penalty is
that updates will be slow for a while, as they’ll result in a lot of
block splitting when all blocks are full.

Splitting the data over several databases is generally a good strategy.
Once each has finished being updated, compact it to make it small and
faster to search.

A multiple-database scheme works particularly well if you want a rolling
web index where the contents of the oldest database can be rechecked and
live links put back into a new database which, once built, replaces the
oldest database. It’s also good for a news-type application where older
documents should expire from the index.

Size Limits in Xapian

The chert backend (which is currently the default and recommended
backend) stores the indexes in several files containing Btree tables. If
you’re indexing with positional information (for phrase searching) the
term positions table is usually the largest.

The current limits are:

		Xapian uses unsigned 32-bit ints for document ids, so you’re limited
to just over 4 billion documents in a database. The other limits will
cut in first for a single database, but searches over multiple
databases are done by interleaving the document ids, so this might
start to matter (especially if one database is much larger than the
others). This interleaving technique could be changed fairly easily
if it proves problematic.

		If you search many databases concurrently, you may hit the
per-process file-descriptor limit - each chert database uses between
3 and 7 fds depending which tables are present. Some Unix-like OSes
allow this limit to be raised. Another way to avoid it (and to spread
the search load) is to use the remote backend to search databases on
a cluster of machines. Chert could be made to not open fds for tables
which aren’t being used during search (values and positions may not
be), or to juggle fds - the record table is typically only used for
results, while the posting table is typically only used during
matching.

		If the OS has a filesize limit, that obviously applies to Xapian (a
2GB limit used to be common for older operating systems). The
xapian-core configure script will attempt to detect and automatically
enable support for “LARGE FILES” where possible.

So what is the limit for a modern OS? Taking Linux 2.6 as an example,
ext4 allows files up to 16TB and filesystems up to 1EB, while btrfs
allows files and filesystems up to 16EB (figures from
Wikipedia [http://en.wikipedia.org/wiki/Comparison_of_file_systems]).

		The B-trees use a 32-bit unsigned block count. The default blocksize
is 8K which limits you to 32TB tables. You can increase the blocksize
if this is a problem, but it’s best to do it before you create the
database as otherwise you need to use xapian-compact to make a
compacted copy of the database with the new blocksize, and that will
take a while for such a large database. The maximum blocksize
currently allowed is 64K, which limits you to 256TB tables.

		Xapian stores the total length (i.e. number of terms) of all the
documents in a database so it can calculate the average document
length. This is currently handled as an unsigned 64-bit quantity so
it’s not likely to be a limit you’ll hit. It’s listed here for
completeness.

If you’ve further questions about scalability, ask on the mailing lists
- people using Xapian to search large databases may be able to make
further suggestions.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/overview.html

 Navigation

 		
 index

 		Xapian docs documentation »

Omega overview

If you just want a very quick overview, you might prefer to read the
quick-start guide.

Omega operates on a set of databases. Each database is created and updated
separately using either omindex or scriptindex. You can
search these databases (or any other Xapian database with suitable contents)
via a web front-end provided by omega, a CGI application. A search can also be
done over more than one database at once.

There are separate documents covering CGI parameters, the
Term Prefixes which are conventionally used, and
OmegaScript, the language used to define omega’s web
interface. Omega ships with several OmegaScript templates and you can
use these, modify them, or just write your own. See the “Supplied Templates”
section below for details of the supplied templates.

Omega parses queries using the Xapian::QueryParser class - for the supported
syntax, see queryparser.html in the xapian-core documentation
- available online at: http://xapian.org/docs/queryparser.html

Term construction

Documents within an omega database are stored with two types of terms:
those used for probabilistic searching (the CGI parameter ‘P’), and
those used for boolean filtering (the CGI parameter ‘B’). Boolean
terms start with an initial capital letter denoting the ‘group’ of the
term (e.g. ‘M’ for MIME type), while probabilistic terms are all
lower-case, and are also stemmed before adding to the
database.

The “english” stemmer is used by default - you can configure this for omindex
and scriptindex with --stemmer=LANGUAGE (use --stemmer=none to disable
stemming, see omindex --help for the list of accepted language names). At
search time you can configure the stemmer by adding $set{stemmer,LANGUAGE}
to the top of your OmegaScript template.

The two term types are used as follows when building the query:
B(oolean) terms with the same prefix are ORed together, with all the
different prefix groups being ANDed together. This is then FILTERed
against the P(robabilistic) terms. This will look something like:

 [FILTER]
 / \
 / \
P-terms [AND]
 / | ... \
 /
 [OR]
 / | ... \
 B(F,1) B(F,2)...B(F,n)

Where B(F,1) is the first boolean term with prefix F, and so on.

The intent here is to allow filtering on arbitrary (and, typically,
orthogonal) characteristics of the document. For instance, by adding
boolean terms “Ttext/html”, “Ttext/plain” and “P/press” you would be
filtering the probabilistic search for only documents that are both in
the “/press” site and which are either of MIME type text/html or
text/plain. (See below for more information about sites.)

If there is no probabilistic query, the boolean filter is promoted to
be the query, and the weighting scheme is set to boolean. This has
the effect of applying the boolean filter to the whole database.

In order to add more boolean prefixes, you will need to alter the
index_file() function in omindex.cc. Currently omindex adds several
useful ones, detailed below.

Probabilistic terms are constructed from the title, body and keywords
of a document. (Not all document types support all three areas of
text.) Title terms are stored with position data starting at 0, body
terms starting 100 beyond title terms, and keyword terms starting 100
beyond body terms. This allows queries using positional data without
causing false matches across the different types of term.

Sites

Within a database, Omega supports multiple sites. These are recorded
using boolean terms (see ‘Term construction’, above) to allow
filtering on them.

Sites work by having all documents within them having a common base
URL. For instance, you might have two sites, one for your press area
and one for your product descriptions:

		http://example.com/press/index.html

		http://example.com/press/bigrelease.html

		http://example.com/products/bigproduct.html

		http://example.com/products/littleproduct.html

You could index all documents within http://example.com/press/ using a
site of ‘/press’, and all within http://example.com/products/ using
‘/products’.

Sites are also useful because omindex indexes documents through the
file system, not by fetching from the web server. If you don’t have a
URL to file system mapping which puts all documents under one
hierarchy, you’ll need to index each separate section as a site.

An obvious example of this is the way that many web servers map URLs
of the form <http://example.com/~<username>/> to a directory within
that user’s home directory (such as ~<username>/pub on a Unix
system). In this case, you can index each user’s home page separately,
as a site of the form ‘/~<username>’. You can then use boolean
filters to allow people to search only a specific home page (or a
group of them), or omit such terms to search everyone’s pages.

Note that the site specified when you index is used to build the
complete URL that the results page links to. Thus while sites will
typically want to be relative to the hostname part of the URL (e.g.
‘/site’ rather than ‘http://example.com/site’), you can use them
to have a single search across several different hostnames. This will
still work if you actually store each distinct hostname in a different
database.

omindex operation

omindex is fairly simple to use, for example:

omindex --db default --url http://example.com/ /var/www/example.com

For a full list of command line options supported, see man omindex
or omindex --help.

You must specify the database to index into (it’s created if it doesn’t
exist, but parent directories must exist). You will often also want to specify
the base URL (which is used as the site, and can be relative to the hostname -
starts ‘/’ - or absolute - starts with a scheme, e.g.
‘http://example.com/products/’). If not specified, the base URL defaults to
/.

You also need to tell omindex which directory to index. This should be
either a single directory (in which case it is taken to be the
directory base of the entire site being indexed), or as two arguments,
the first being the directory base of the site being indexed, and the
second being a relative directory within that to index.

For instance, in the example above, if you separate your products by
size, you might end up with:

		http://example.com/press/index.html

		http://example.com/press/bigrelease.html

		http://example.com/products/large/bigproduct.html

		http://example.com/products/small/littleproduct.html

If the entire website is stored in the file system under the directory
/www/example, then you would probably index the site in two
passes, one for the ‘/press’ site and one for the ‘/products’ site. You
might use the following commands:

$ omindex -p --db /var/lib/omega/data/default --url /press /www/example/press
$ omindex -p --db /var/lib/omega/data/default --url /products /www/example/products

If you add a new large products, but don’t want to reindex the whole of
the products section, you could do:

$ omindex -p --db /var/lib/omega/data/default --url /products /www/example/products large

and just the large products will be reindexed. You need to do it like that, and
not as:

$ omindex -p --db /var/lib/omega/data/default --url /products/large /www/example/products/large

because that would make the large products part of a new site,
‘/products/large’, which is unlikely to be what you want, as large
products would no longer come up in a search of the products
site. (Note that the --depth-limit option may come in handy if you have
sites ‘/products’ and ‘/products/large’, or similar.)

omindex has built-in support for indexing HTML, PHP, text files, CSV
(Comma-Separated Values) files, Atom feeds, and AbiWord documents. It can also
index a number of other formats using external programs. Filter programs are
run with CPU, time and memory limits to prevent a runaway filter from blocking
indexing of other files.

The way omindex decides how to index a file is based around MIME content-types.
First of all omindex will look up a file’s extension in its extension to MIME
type map. If there’s no entry, it will then ask libmagic to examine the
contents of the file and try to determine a MIME type.

The following formats are supported as standard (you can tell omindex to use
other filters too - see below):

		HTML (.html, .htm, .shtml)

		PHP (.php) - our HTML parser knows to ignore PHP code

		text files (.txt, .text)

		SVG (.svg)

		CSV (Comma-Separated Values) files (.csv)

		PDF (.pdf) if pdftotext is available (comes with poppler or xpdf)

		PostScript (.ps, .eps, .ai) if ps2pdf (from ghostscript) and pdftotext (comes
with poppler or xpdf) are available

		OpenOffice/StarOffice documents (.sxc, .stc, .sxd, .std, .sxi, .sti, .sxm,
.sxw, .sxg, .stw) if unzip is available

		OpenDocument format documents (.odt, .ods, .odp, .odg, .odc, .odf, .odb,
.odi, .odm, .ott, .ots, .otp, .otg, .otc, .otf, .oti, .oth) if unzip is
available

		MS Word documents (.dot) if antiword is available (.doc files are left to
libmagic, as they may actually be RTF (AbiWord saves RTF when asked to save
as .doc, and Microsoft Word quietly loads RTF files with a .doc extension),
or plain-text).

		MS Excel documents (.xls, .xlb, .xlt, .xlr) if xls2csv is available (comes
with catdoc)

		MS Powerpoint documents (.ppt, .pps) if catppt is available (comes with
catdoc)

		MS Office 2007 documents (.docx, .docm, .dotx, .dotm, .xlsx, .xlsm, .xltx,
.xltm, .pptx, .pptm, .potx, .potm, .ppsx, .ppsm) if unzip is available

		Wordperfect documents (.wpd) if wpd2text is available (comes with libwpd)

		MS Works documents (.wps, .wpt) if wps2text is available (comes with libwps)

		MS Outlook message (.msg) if perl with Email::Outlook::Message and
HTML::Parser modules is available

		MS Publisher documents (.pub) if pub2xhtml is available (comes with libmspub)

		AbiWord documents (.abw)

		Compressed AbiWord documents (.zabw) if gzip is available

		Rich Text Format documents (.rtf) if unrtf is available

		Perl POD documentation (.pl, .pm, .pod) if pod2text is available

		reStructured text (.rst, .rest) if rst2html is available (comes with
docutils)

		TeX DVI files (.dvi) if catdvi is available

		DjVu files (.djv, .djvu) if djvutxt is available

		XPS files (.xps) if unzip is available

		Debian packages (.deb, .udeb) if dpkg-deb is available

		RPM packages (.rpm) if rpm is available

		Atom feeds (.atom)

If you have additional extensions that represent one of these types, you can
add an additional MIME mapping using the --mime-type option. For
instance, if your press releases are PostScript files with extension
.posts you can tell omindex this like so:

$ omindex --db /var/lib/omega/data/default --url /press /www/example/press --mime-type posts:application/postscript

The syntax of --mime-type is ‘ext:type’, where ext is the extension of
a file of that type (everything after the last ‘.’). The type can be any
string, but to be useful there either needs to be a filter set for that type
- either using --filter or by type being understood by default:

		text/csv

		text/html

		text/plain

		text/rtf

		text/x-perl

		text/x-rst

		application/atom+xml

		application/msword

		application/pdf

		application/postscript

		application/vnd.ms-excel

		application/vnd.ms-outlook

		application/vnd.ms-powerpoint

		application/vnd.ms-works

		application/vnd.ms-xpsdocument

		application/vnd.oasis.opendocument.text

		application/vnd.oasis.opendocument.spreadsheet

		application/vnd.oasis.opendocument.presentation

		application/vnd.oasis.opendocument.graphics

		application/vnd.oasis.opendocument.chart

		application/vnd.oasis.opendocument.formula

		application/vnd.oasis.opendocument.database

		application/vnd.oasis.opendocument.image

		application/vnd.oasis.opendocument.text-master

		application/vnd.oasis.opendocument.text-template

		application/vnd.oasis.opendocument.spreadsheet-template

		application/vnd.oasis.opendocument.presentation-template

		application/vnd.oasis.opendocument.graphics-template

		application/vnd.oasis.opendocument.chart-template

		application/vnd.oasis.opendocument.formula-template

		application/vnd.oasis.opendocument.image-template

		application/vnd.oasis.opendocument.text-web

		application/vnd.openxmlformats-officedocument.wordprocessingml.document

		application/vnd.openxmlformats-officedocument.wordprocessingml.template

		application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

		application/vnd.openxmlformats-officedocument.spreadsheetml.template

		application/vnd.openxmlformats-officedocument.presentationml.presentation

		application/vnd.openxmlformats-officedocument.presentationml.slideshow

		application/vnd.openxmlformats-officedocument.presentationml.template

		application/vnd.sun.xml.calc

		application/vnd.sun.xml.calc.template

		application/vnd.sun.xml.draw

		application/vnd.sun.xml.draw.template

		application/vnd.sun.xml.impress

		application/vnd.sun.xml.impress.template

		application/vnd.sun.xml.math

		application/vnd.sun.xml.writer

		application/vnd.sun.xml.writer.global

		application/vnd.sun.xml.writer.template

		application/vnd.wordperfect

		application/x-abiword

		application/x-abiword-compressed

		application/x-debian-package

		application/x-dvi

		application/x-mspublisher

		application/x-redhat-package-manager

		image/svg+xml

		image/vnd.djvu

		ignore (magic token to tell omindex to quietly ignore such files)

You can specify * as the MIME sub-type for --filter, for example if you
have a filter you want to apply to any video files, you could specify it using
--filter 'video/*:index-video-file'. Note that this is checked right after
checking for the exact MIME type, so will override any built-in filters which
would otherwise match. Also you can’t use arbitrary wildcards, just * for
the entire sub-type. And be careful to quote * to protect it from the
shell.

By default, files with the following extensions are marked as ‘ignore’:

- a
- adm
- bin
- com
- css
- cur
- dat
- db
- dll
- dylib
- exe
- fon
- ico
- jar
- js
- lib
- lnk
- o
- obj
- pyc
- pyd
- pyo
- so
- sqlite
- sqlite3
- sqlite-journal
- tmp
- ttf

If you wish to remove a MIME mapping, you can do this by omitting the type -
for example if you have .dot files which are inputs for the graphviz
tool dot, then you may wish to remove the default mapping for .dot
files and let libmagic be used to determine their type, which you can do
using: --mime-type=dot: (if you want to ignore all .dot files,
instead use --mime-type=dot:ignore).

The lookup of extensions in the MIME mappings is case sensitive, but if an
extension isn’t found and includes upper case ASCII letters, they’re converted
to lower case and the lookup is repeated, so you effectively get case
insensitive lookup for mappings specified with a lower-case extension, but
you can set different handling for differently cased variants if you need
to.

You can add support for additional MIME content types (or override existing
ones) using the --filter option to specify a command to run. At present,
this command needs to produce output on stdout in either HTML or UTF-8 text
format.

For example, if you’d prefer to use Abiword to extract text from word documents
(by default, omindex uses antiword), then you can pass the option
--filter=application/msword:'abiword --to=txt --to-name=fd://1' to
omindex. The filename of the file to be extracted will be appended to this
command, separated by a space.

Another example - if you wanted to handle files of MIME type
application/octet-stream by running them through strings -n8, you can
pass the option --filter=application/octet-stream:'strings -n8'.

A more complex example of the use of --filter makes use of LibreOffice,
via the unoconv script, to extract text from various formats. First you
need to start a listening instance (if you don’t, unoconv will start up
LibreOffice for every file, which is rather inefficient) - the & tells
the shell to run it in the background:

unoconv --listener &

Then run omindex with options such as
--filter=application/msword,html:'unoconv --stdout -f html' (you’ll want
to repeat this for each format which you want to use LibreOffice on).

If you know of a reliable filter which can extract text from a file format
which might be of interest to others, please let us know so we can consider
including it as a standard filter.

If you specify false as the command in --filter, omindex will skip
files with the specified MIME type.

The --duplicates option controls how omindex handles documents which map
to a URL which is already in the database. The default (which can be
explicitly set with --duplicates=replace) is to reindex if the last
modified time of the file is newer than that recorded in the database.
The alternative is --duplicates=ignore, which will never reindex an
existing document. If you only add documents, this avoids the overhead
of checking the last modified time. It also allows you to prioritise
adding completely new documents to the database over updating existing ones.

By default, omindex will remove any document in the database which has a URL
that doesn’t correspond to a file seen on disk - in other words, it will clear
out everything that doesn’t exist any more. However if you are building up
an omega database with several runs of omindex, this is not
appropriate (as each run would delete the data from the previous run),
so you should use the --no-delete option. Note that if you
choose to work like this, it is impossible to prune old documents from
the database using omindex. If this is a problem for you, an
alternative is to index each subsite into a different database, and
merge all the databases together when searching.

--depth-limit allows you to prevent omindex from descending more than
a certain number of directories. Specifying --depth-limit=0 means no limit
is imposed on recursion; --depth-limit=1 means don’t descend into any
subdirectories of the start directory.

HTML Parsing

The document <title> tag is used as the document title, the ‘description’
META tag (if present) is used for the document snippet, and the ‘keywords’
META tag (if present) is indexed as extra document text.

The HTML parser will look for the ‘robots’ META tag, and won’t index pages
which are marked as noindex or none, for example any of the following:

<meta name="robots" content="noindex,nofollow">
<meta name="robots" content="noindex">
<meta name="robots" content="none">

Sometimes it is useful to be able to exclude just part of a page from being
indexed (for example you may not want to index navigation links, or a footer
which appears on every page). To allow this, the parser supports “magic”
comments to mark sections of the document to not index. Two formats are
supported - htdig_noindex (used by ht://Dig) and UdmComment (used by
mnoGoSearch):

Index this bit <!--htdig_noindex-->but not this<!--/htdig_noindex-->

		::

		<!–UdmComment–><div>Boring copyright notice</div><!–/UdmComment–>

Boolean terms

omindex will create the following boolean terms when it indexes a
document:

		T

		MIME type

		H

		hostname of site (if supplied - this term won’t exist if you index a
site with base URL ‘/press’, for instance)

		P

		path of site (i.e. the rest of the site base URL)

		U

		full URL of indexed document - if the resulting term would be > 240
characters, a hashing scheme is used to prevent omindex overflowing
the Xapian term length limit.

		D

		date (numeric format: YYYYMMDD)
date can also have the magical form “latest” - a document indexed
by the term Dlatest matches any date-range without an end date.
You can index dynamic documents which are always up to date
with Dlatest and they’ll match as expected. (If you use sort by date,
you’ll probably also want to set the value containing the timestamp to
a “max” value so dynamic documents match a date in the far future).

		M

		month (numeric format: YYYYMM)

		Y

		year (four digits)

omega configuration

Most of the omega CGI configuration is dynamic, by setting CGI
parameters. However some things must be configured using a
configuration file. The configuration file is searched for in
various locations:

		Firstly, if the “OMEGA_CONFIG_FILE” environment variable is
set, its value is used as the full path to a configuration file
to read.

		Next (if the environment variable is not set, or the file pointed
to is not present), the file “omega.conf” in the same directory as
the Omega CGI is used.

		Next (if neither of the previous steps found a file), the file
“${sysconfdir}/omega.conf” (e.g. /etc/omega.conf on Linux systems)
is used.

		Finally, if no configuration file is found, default values are used.

The format of the file is very simple: a line per option, with the
option name followed by its value, separated by a whitespace. Blank
lines are ignored. If the first non-whitespace character on a line
is a ‘#’, omega treats the line as a comment and ignores it.

The current options are ‘database_dir’ (the directory containing all the
Omega databases), ‘template_dir’ (the directory containing the OmegaScript
templates), and ‘log_dir’ (the directory which the OmegaScript $log command
writes log files to).

The default values (used if no configuration file is found) are:

database_dir /var/lib/omega/data
template_dir /var/lib/omega/templates
log_dir /var/log/omega

Note that, with apache, environment variables may be set using mod_env, and
with apache 1.3.7 or later this may be used inside a .htaccess file. This
makes it reasonably easy to share a single system installed copy of Omega
between multiple users.

Supplied Templates

The OmegaScript templates supplied with Omega are:

		query - This is the default template, providing a typical Web search
interface.

		topterms - This is just like query, but provides a “top terms” feature
which suggests terms the user might want to add to their query to
obtain better results.

		godmode - Allows you to inspect a database showing which terms index
each document, and which documents are indexed by each term.

		opensearch - Provides results in OpenSearch format (for more details
see http://www.opensearch.org/).

		xml - Provides results in a custom XML format.

		emptydocs - Shows a list of documents with zero length. If CGI parameter
TERM is set to a non-empty value, then only documents indexed by that given
term are shown (e.g. TERM=Tapplication/pdf to show PDF files with no text);
otherwise all zero length documents are shown.

There are also “helper fragments” used by the templates above:

		inc/anyalldropbox - Provides a choice of matching “any” or “all” terms
by default as a drop down box.

		inc/anyallradio - Provides a choice of matching “any” or “all” terms
by default as radio buttons.

		toptermsjs - Provides some JavaScript used by the topterms template.

Document data construction

This is only useful if you need to inject your own documents into the
database independently of omindex, such as if you are indexing
dynamically-generated documents that are served using a server-side
system such as PHP or ASP, but which you can determine the contents of
in some way, such as documents generated from reasonably static
database contents.

The document data field stores some summary information about the
document, in the following (sample) format:

url=<baseurl>
sample=<sample>
caption=<title>
type=<mimetype>

Further fields may be added (although omindex doesn’t currently add any
others), and may be looked up from OmegaScript using the $field{}
command.

As of Omega 0.9.3, you can alternatively add something like this near the
start of your OmegaScript template:

$set{fieldnames,$split{caption sample url}}

Then you need only give the field values in the document data, which can
save a lot of space in a large database. With the setting of fieldnames
above, the first line of document data can be accessed with $field{caption},
the second with $field{sample}, and the third with $field{url}.

Stopword List

At search time, Omega uses a built-in list of stopwords, which are:

a about an and are as at be by en for from how i in is it of on or that the
this to was what when where which who why will with you your

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/csharp/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

C# bindings for Xapian

The C# bindings for Xapian are packaged in the Xapian namespace
and largely follow the C++ API, with the following differences and
additions. C# strings and other types are converted automatically
in the bindings, so generally it should just work as expected.

The examples subdirectory contains examples showing how to use the
C# bindings based on the simple examples from xapian-examples:
SimpleIndex.cs,
SimpleSearch.cs,
SimpleExpand.cs.

Note: the passing of strings from C# into Xapian and back isn’t currently zero byte safe. If you try to handle string containing zero bytes, you’ll find they get truncated at the zero byte.

Unicode Support

In Xapian 1.0.0 and later, the Xapian::Stem, Xapian::QueryParser, and
Xapian::TermGenerator classes all assume text is in UTF-8. If you’re
using Mono on UNIX with a UTF-8 locale (which is the default on most
modern Linux distributions), then Xapian appears to get passed Unicode
strings as UTF-8, so it should just work. We tested with Mono 2.6.7
using the Mono C# 2.0 compiler (gmcs).

However, Microsoft and Mono’s C# implementations apparently take
rather different approaches to Unicode, and we’ve not tested with
Microsoft’s implementation. If you try it, please report how well
it works (or how badly it fails...)

Method Naming Conventions

Methods are renamed to use the “CamelCase” capitalisation convention which C# normally uses. So in C# you use GetDescription instead of
get_description.

Exceptions

Exceptions are thrown as SWIG exceptions instead of Xapian
exceptions. This isn’t done well at the moment; in future we will
throw wrapped Xapian exceptions. For now, it’s probably easier to
catch all exceptions and try to take appropriate action based on
their associated string.

Iterators

The C#-wrapped iterators work much like their C++ counterparts, with
operators “++”, “–”, “==”, and ”!=” overloaded. E.g.:

Xapian.MSetIterator m = mset.begin();
while (m != mset.end()) {
 // do something
 ++m;
}

Iterator dereferencing

C++ iterators are often dereferenced to get information, eg
(*it). In C# these are all mapped to named methods, as
follows:

		Iterator
		Dereferencing method

		PositionIterator
		GetTermPos()

		PostingIterator
		GetDocId()

		TermIterator
		GetTerm()

		ValueIterator
		GetValue()

		MSetIterator
		GetDocId()

		ESetIterator
		GetTerm()

Other methods, such as MSetIterator.GetDocument(), are available unchanged.

MSet

MSet objects have some additional methods to simplify access (these
work using the C++ array dereferencing):

		Method name
		Explanation

		GetHit(index)
		returns MSetIterator at index

		GetDocumentPercentage(index)
		ConvertToPercent(GetHit(index))

		GetDocument(index)
		GetHit(index).GetDocument()

		GetDocumentId(index)
		GetHit(index).GetDocId()

Non-Class Functions

The C++ API contains a few non-class functions (the Database factory
functions, and some functions reporting version information), but C# doesn’t
allow functions which aren’t in a class so these are wrapped as static
member functions of abstract classes like so:

		Xapian::version_string() is wrapped as Xapian.Version.String()

		Xapian::major_version() is wrapped as Xapian.Version.Major()

		Xapian::minor_version() is wrapped as Xapian.Version.Minor()

		Xapian::revision() is wrapped as Xapian.Version.Revision()

		Xapian::Auto::open_stub() is wrapped as Xapian.Auto.OpenStub() (but is now deprecated)

		Xapian::Chert::open() is wrapped as Xapian.Chert.Open() (but is now deprecated)

		Xapian::InMemory::open() is wrapped as Xapian.InMemory.Open()

		Xapian::Remote::open() is wrapped as Xapian.Remote.Open() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

		Xapian::Remote::open_writable() is wrapped as Xapian.Remote.OpenWritable() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

Constants

The Xapian::DB_* constants are currently wrapped in a Xapian
class within the Xapian namespace, so have a double Xapian prefix!
So Xapian::DB_CREATE_OR_OPEN is available as
Xapian.Xapian.DB_CREATE_OR_OPEN.
The Query::OP_* constants are wrapped a little oddly too:
Query::OP_OR is wrapped as Xapian.Query.op.OP_OR.
Similarly, QueryParser::STEM_SOME as
Xapian.QueryParser.stem_strategy.STEM_SOME.
The naming here needs sorting out...

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter.
This isn’t currently wrapped in C#.

MatchAll and MatchNothing

In Xapian 1.3.0 and later, these are wrapped as static constants
xapian.Query.MatchAll and xapian.Query.MatchNothing.

If you want to be compatible with earlier versions, you can continue to use
new xapian.Query("") instead of xapian.Query.MatchAll
and new xapian.Query() instead of
xapian.Query.MatchNothing.

MatchDecider

Custom MatchDeciders can be created in C#; simply subclass
Xapian.MatchDecider, and define an
Apply method that will do the work. The simplest example (which does nothing
useful) would be as follows:

class MyMatchDecider : Xapian.MatchDecider {
 public override bool Apply(Xapian.Document doc) {
 return true;
 }
}

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/net/remote_protocol.html

 Navigation

 		
 index

 		Xapian docs documentation »

Remote Backend Protocol

This document describes version 38.0 of the protocol used by Xapian’s
remote backend. The major protocol version increased to 38 in Xapian
1.3.2.

Clients and servers must support matching major protocol versions and the
client’s minor protocol version must be the same or lower. This means that for
a minor protocol version change, you can upgrade first servers and then
clients and everything should work during the upgrades.

The protocol assumes a reliable two-way connection across which
arbitrary data can be sent - this could be provided by a TCP socket for
example (as it is with xapian-tcpsrv), but any such connection could be
used. For example, you could used xapian-progsrv across an ssh
connection, or even a custom server across a suitable serial connection.

All messages start with a single byte identifying code. A message from
client to server has a MSG_XXX identifying code, while a message
from server to client has a REPLY_XXX identifying code (but note
that a reply might not actually be in response to a message -
REPLY_UPDATE is sent by the server when the connection is opened - and some
messages result in multiple replies).

The identifying code is followed by the encoded length of the contents
followed by the contents themselves.

Inside the contents, strings are generally passed as an encoded length
followed by the string data (this is indicated below by L<...>)
except when the string is the last or only thing in the contents in
which case we know the length because we know the length of the contents
so we don’t need to explicitly specify it (indicated by <...> below).

Integers are encoded using the same encoding used for string lengths
(indicated by I<...> below).

Floating pointing values are passed using a bit packed encoding of the
sign and exponent and a base-256 encoding of the mantissa which avoids
any rounding issues (assuming that both machines have FLT_RADIX equal
to some power of 2). This is indicated by F<...> below.

Boolean values are passed as a single byte which is the ASCII character
value for 0 or 1. This is indicated by B<...> below.

Unsigned byte values are indicated by C<...> below.

Server statistics

		REPLY_UPDATE <protocol major version> <protocol minor version> I<db doc count> I(<last docid> - <db doc count>) I<doclen lower bound> I(<doclen upper bound> - <doclen lower bound>) B<has positions?> I<db total length> <UUID>

The protocol major and minor versions are passed as a single byte each
(e.g. '\x1e\x01' for version 30.1). The server and client must
understand the same protocol major version, and the server protocol
minor version must be greater than or equal to that of the client (this
means that the server understands newer MSG_XXX, but will only send
newer REPLY_YYY in response to an appropriate client message.

Exception

		REPLY_EXCEPTION <serialised Xapian::Error object>

If an unknown exception is caught by the server, this message is sent
but with empty contents.

This message can be sent at any point - the serialised exception is
unserialised by the client and thrown. The server and client both abort
any current sequence of messages.

Write Access

		MSG_WRITEACCESS

		REPLY_UPDATE [...]

The reply message is the same format as the server’s opening greeting given
above.

If write access isn’t supported or the database is locked by another writer,
then an exception is thrown.

By default the server is also read-only, even if writing is supported.
If the client wants to be able to write, it needs to request this
explicitly. We do this so that the same server can support multiple
read-only clients and one writing client at once, without the protocol
for read-only clients requiring an extra message. The overhead of an
extra message exchange for a writer is unlikely to matter as indexing is
rarely so real-time critical as searching.

All Terms

		MSG_ALLTERMS

		REPLY_ALLTERMS I<term freq> C<chars of previous term to reuse> <string to append>

		...

		REPLY_DONE

Term Exists

		MSG_TERMEXISTS <term name>

		REPLY_TERMEXISTS or REPLY_TERMDOESNTEXIST

Term Frequency

		MSG_TERMFREQ <term name>

		REPLY_TERMFREQ I<term freq>

Collection Frequency

		MSG_COLLFREQ <term name>

		REPLY_COLLFREQ I<collection freq>

Document

		MSG_DOCUMENT I<document id>

		REPLY_DOCDATA <document data>

		REPLY_VALUE I<value no> <value>

		...

		REPLY_DONE

Document Length

		MSG_DOCLENGTH I<document id>

		REPLY_DOCLENGTH I<document length>

Keep Alive

		MSG_KEEPALIVE

		REPLY_DONE

Reopen

		MSG_REOPEN

		REPLY_DONE or REPLY_UPDATE [...]

If the database was already at the latest version, REPLY_DONE is returned.

If it was reopened, then the reply message is the same format as the server’s
opening greeting given above.

Query

		MSG_QUERY L<serialised Xapian::Query object> I<query length> I<collapse max> [I<collapse key number> (if collapse_max non-zero)] <docid order> I<sort key number> <sort by> B<sort value forward> F<time limit> <percent cutoff> F<weight cutoff> <serialised Xapian::Weight object> <serialised Xapian::RSet object> [L<serialised Xapian::MatchSpy object>...]

		REPLY_STATS <serialised Stats object>

		MSG_GETMSET I<first> I<max items> I<check at least> <serialised global Stats object>

		REPLY_RESULTS L<the result of calling serialise_results() on each Xapian::MatchSpy> <serialised Xapian::MSet object>

docid order is '0', '1' or '2'.

sort by is '0', '1', '2' or '3'.

Termlist

		MSG_TERMLIST I<document id>

		REPLY_DOCLENGTH I<document length>

		REPLY_TERMLIST I<wdf> I<term freq> C<chars of previous term to reuse> <string to append>

		...

		REPLY_DONE

Positionlist

		MSG_POSITIONLIST I<document id> <term name>

		REPLY_POSITIONLIST I<termpos delta - 1>

		...

		REPLY_DONE

Since positions must be strictly monotonically increasing, we encode
(pos - lastpos - 1) so that small differences between large position
values can still be encoded compactly. The first position is encoded as
its true value.

Postlist

		MSG_POSTLIST <term name>

		REPLY_POSTLISTSTART I<termfreq> I<collfreq>

		REPLY_POSTLISTITEM I<docid delta - 1> I<wdf> F<document length>

		...

		REPLY_DONE

Since document IDs in postlists must be strictly monotonically
increasing, we encode (docid - lastdocid - 1) so that small
differences between large document IDs can still be encoded compactly.
The first document ID is encoded as its true value - 1 (since document
IDs are always > 0).

Shut Down

		MSG_SHUTDOWN

No reply is sent - this message signals that the client has ended the
session.

Update

		MSG_UPDATE

		REPLY_UPDATE I<db doc count> I<last docid> B<has positions?> I<db total length> <UUID>

Only useful for a WritableDatabase (since the same statistics are
sent when the connection is initiated in the REPLY_GREETING and they
don’t change if the database can’t change).

Add document

		MSG_ADDDOCUMENT <serialised Xapian::Document object>

		REPLY_ADDDOCUMENT I<document id>

Delete document

		MSG_DELETEDOCUMENT I<document id>

		REPLY_DONE

Delete document by term

		MSG_DELETEDOCUMENTTERM <term name>

Replace document

		MSG_REPLACEDOCUMENT I<document id> <serialised Xapian::Document object>

Replace document by term

		MSG_REPLACEDOCUMENTTERM L<term name> <serialised Xapian::Document object>

Cancel

		MSG_CANCEL

Commit

		MSG_COMMIT

		REPLY_DONE

Set metadata

		MSG_SETMETADATA L<key> <value>

Get metadata

		MSG_GETMETADATA <key>

		REPLY_METADATA <value>

Metadata keys

		MSG_METADATAKEYLIST <prefix>

		REPLY_METADATAKEYLIST C<chars of previous key to reuse> <string to append>

		...

		REPLY_DONE

Add spelling

		MSG_ADDSPELLING I<freqinc> <word>

Remove spelling

		MSG_REMOVESPELLING I<freqdec> <word>

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-applications/omega/docs/quickstart.html

 Navigation

 		
 index

 		Xapian docs documentation »

Basic instructions

		Use omindex to build an index of your website:

$ omindex --db DBPATH --url / WEBPATH

Where DBPATH is where you want the database, such as
/var/lib/omega/data/default and WEBPATH is the directory containing
all your web documents - e.g. /var/www.

To start off with, it is advisable to have the final directory of the
database be called ‘default’. This is what Omega expects, although it
can be changed once you’ve got things going.

		Edit omega.conf:

This contains 3 settings, written one per line as “<SETTING> <VALUE>”:

		database_dir - this should point to the directory containing your
database(s), for example /var/lib/omega/data (this should contain a
database called ‘default’ which is the database you indexed to above).

		template_dir - the directory where the OmegaScript templates are, for
example /var/lib/omega/templates (this should contain an OmegaScript
template called ‘query’ which is used by default).

		log_dir - the directory which the OmegaScript $log command writes log files
to, for example /var/log/omega .

		Test omega from the command line:

$ /usr/lib/omega/bin/omega 'P=my search terms' HITSPERPAGE=10

(The path to omega may be different in your installation.)

This will output quite a lot of HTML. Normally you use omega via CGI, but it
also has this test mode which is useful for checking that everything works
independent of your webserver configuration. To actually use omega, you
should install it to run via CGI by copying or linking the omega executable
into your cgi-bin directory.

For more information, see the overview document. There
are other documents covering the CGI parameters which
omega accepts, and the OmegaScript language used to
control the format of omega’s output.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-letor/docs/letor.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Learning-to-Rank

Table of Contents

		Xapian Learning-to-Rank
		Introduction
		Learning the model

		Ranking

		Features

		How to Use

		Extendability
		Adding new Features

		Adding a new LTR Algorithm

Introduction

Learning-to-Rank(LTR) can be viewed as a weighting scheme which involves machine learning. The Machine Learning involved requires training data to build a model. So if you have some training data with relevance judgements then you can train the LTR model and can use it to assign score to documents for the new query. Learning-to-Rank has gained immense popularity and attention among researchers recently. Xapian is the first project with Learning-to-Rank functionality added to it.

The main idea behind LTR is that there are many relevant documents low down in the ranked list and we wish to move them up in the rankings to replace irrelevant documents. We identify such relevant and irrelevant documents by their feature vectors. Before understanding about these features and how it works, it would be important to look at the typical Learning-to-Rank training data:

0 qid:10032 1:0.130742 2:0.000000 3:0.333333 4:0.000000 ... 18:0.750000 19:1.000000 #docid = 1123323
1 qid:10032 1:0.593640 2:1.000000 3:0.000000 4:0.000000 ... 18:0.500000 19:0.023400 #docid = 4222333

Here each row represents the document for the specified query. The first column is the relevance label and which can take two values: 0 for irrelevant and 1 for relevant documents. The second column represents the queryid, and the last column is the docid. The third column represents the value of the first feature and so on until 19th feature.

LTR can be broadly seen in two stages: Learning the model & Ranking. Learning the model takes the training file as input in the above mentioned format and produces a model. After that given this learnt model, when a new query comes in, scores can be assigned to the documents associated to it.

Learning the model

As mentioned before, this process requires a training file in the above format. Xapian::Letor API empowers you to generate such training file. But for that you have to supply some information files like:

1. Query file: This file has information of queries to be involved in
learning and its id. It should be formatted in such a way:

2010001 'landslide malaysia'
2010002 'search engine'
2010003 'Monuments of India'
2010004 'Indian food'

where 2010xxx being query-id followed by a comma separated query in
single-quotes.

2. Qrel file: This is the file containing relevance judgements. It should
be formatted in this way:

2010003 Q0 19243417 1
2010003 Q0 3256433 1
2010003 Q0 275014 1
2010003 Q0 298021 0
2010003 Q0 1456811 0

where first column is query-id, third column is Document-id and fourth
column being relevance label which is 0 for irrelevance and 1 for
relevance. Second column is many times referred as ‘iter’ but doesn’t
really important for us. All the fields are whitespace delimited. This is
the standard format of almost all the relevance judgement files. If you
have little different relevance judgement file then you can easily convert
it in such file using basic ‘awk’ command.

3. Collection Index : Here you supply the path to the index of the corpus
generated using Omega [http://xapian.org/docs/omega/overview.html]. If
you have ‘title’ information in the collection with some xml/html tag or so
then add:

indexer.index(title,1,"S"); in omindex.cc &
parser.add_prefix("title","S"); in questletor.cc

Provided such information, API is capable of creating the ‘train.txt’ file which is in the mentioned format and can be easily used for learning a model. In Xapian::Letor we use LibSVM [http://www.csie.ntu.edu.tw/~cjlin/libsvm/] based Support Vector Machine (SVM) learning.

Ranking

After we have built a model, its quite straightforward to get a real score for a particular document for the given query. Here we supply the first hand retrieved ranked-list to the Ranking function, which assigns a new score to each document after converting it to the same dimensioned feature vector. This list is re-ranked according to the new scores.

Features

Features play a major role in the learning. In LTR, features are mainly of three types: query dependent, document dependent (pagerank, inLink/outLink number, number of children, etc) and query-document pair dependent (TF-IDF Score, BM25 Score, etc). In total we have incorporated 19 features which are described below. These features are statistically tested in [Nallapati2004].

Here c(w,D) means that count of term w in Document D. C represents the Collection. ‘n’ is the total number of terms in query.
 is size-of function and idf(.) is the inverse-document-frequency.

		

		

		

		

		

		

All the above 6 features are calculated considering ‘title only’, ‘body only’ and ‘whole’ document. So they make in total 6*3=18 features. The 19th feature is the BM25 score assigned to the document by the Xapian weighting scheme.

One thing that should be noticed is that all the feature values are normalized at Query-Level [http://trac.xapian.org/wiki/GSoC2011/LTR/Notes#QueryLevelNorm]. That means that the values of a particular feature for a particular query are divided by its query-level maximum value and hence all the feature values will be between 0 and 1. This normalization helps for unbiased learning.

		[Nallapati2004]		Nallapati, R. Discriminative models for information retrieval. Proceedings of SIGIR 2004 (pp. 64-71).

How to Use

The whole process can be seen as the following steps:

		Index the collection using the Omindex with title information preserved if any with prefix ‘S’.

In omindex.cc you should ensure the following call to indexer.index() as below if your corpus contains
title information, because that way Xapian::Letor API would be able to calculate the above mentioned features for
‘title only’ category:

indexer.index(title,1,"S");

In questletor.cc, you should have set the ‘title’ field by prefix “S” in harmony to the index. If you
corpus contains title information in some other xml tag than ‘title’, you should tweak omindex accordingly
and set the prefix accordingly below:

parser.add_prefix("title","S");

		Generate the training file if you haven’t already one, supplying query-file, qrel-file and created index.

In questletor.cc you should first define the object of Xapian::Letor class and then call
prepare_training_file(string queryfile, string qrelfile) method. This method fires each query in the queryfile
on the supplied built index and MSet is generated. Using calculate_f1() kind of methods all the features are
calculated for the top N documents in the Retrieved MSet. Then this vector is written off in the training file
after fetching its relevance label from the qrelfile. Basically in this method the whole qrel file is read fetched
in a map<qid,map<docid,RelLabel>> kind of data structure, from which the relevance label is retrieved by supplying
qid (we get from queryfile and docid (we get from MSet). Example:

Xapian::Letor ltr;

ltr.set_database(db);
ltr.set_query(query);

ltr.prepare_training_file(<abs_path_to_queryfile>,<abs_path_to_qrelfile>);

The above code will generate a ‘train.txt’ file in the ../core/examples/
directory.

		Learn the letor model.

Now if there exists a valid ‘train.txt’ file in the ../core/examples/ directory
and with system level libSVM installed you can call letor_learn_model() and
letor_score() methods in the following way:

Xapian::Letor ltr;

ltr.set_database(db);
ltr.set_query(query);

ltr.letor_learn_model();

letor_learn_model() will generate a ‘model.txt’ file in the ../core/examples/
directory which is used to score each document vector.

		Generate the letor scores supplying the initial MSet generated by BM25 scoring.

Method letor_score() will get you a map with letor score associated with each
docid, which can be sorted according to the new score and ranked-list is
printed:

map<Xapian::docid,double> letor_mset = ltr.letor_score(<Xapian::Enquire_generated_mset>);

We use all the default parameters for learning the model with libsvm except svm_type and kernel_type. We use:

-s svm_type = 4 (nu-SVR)
-t kernel_type = 0 (linear : w'*x)

These parameters were selected after much experimentation, also
Learning-to-Rank is a regression problem where we want a real score assigned to
each document. Studies also suggests that linear kernel is best suitable for
the Learning-to-Rank problem for document retrieval. Although if user wishes,
other parameters can be easily tried by manually setting them in letor_score()
method.

Extendability

Xapian::Letor can be easily extended for new LTR algorithms and/or to incorporate new features.

Adding new Features

To add a new feature you should define a new method like Xapian::Letor::calculate_f1() and call it in the places where the document vector is created, such as in prepare_training_file() and letor_score() methods.

Adding a new LTR Algorithm

To add a new LTR algorithm you should override letor_learn_model() and letor_score() depending on the algorithm. According to different parameters, a required version of letor_learn_model() and letor_score will be called. Although prepare_training_file() method may not be affected because it generates a training file in the standard format of Learning-to-Rank data.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/net/replication_protocol.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Database Replication Protocol

Table of contents

		Xapian Database Replication Protocol
		Protocol description
		Client messages

		Server messages

		Changeset files

This document contains details of the implementation of the replication
protocol, version 1. For details of how and why to use the replication
protocol, see the separate Replication Users Guide
document.

Protocol description

The protocol used to transfer the updates is based on the RemoteConnection
system (also used for remote Xapian databases). This provides a “message”
layer abstraction for the connections; so the communication is based on a set
of messages, each with a type, and some associated data.

Where the following description refers to “packed” strings or integers, this
means packed according to the same methods for packing these into databases.

Client messages

The client sends a single message type to the server: this is a message of type
‘R’, and includes the name of a database to be replicated and a revision string
for that database. This message is sent whenever the client wants to receive
updates for a database.

Server messages

The server can send a variety of messages. The message types are currently
defined in an enum in common/replicationprotocol.h (in which each type is
preceded by REPL_REPLY_):

		END_OF_CHANGES: this indicates that no further changes are needed, and ends
the response to the original request. It contains no data.

		FAIL: this indicates that a consistent set of changes couldn’t be sent. It
may occur because the database is being changed too quickly at the senders
end, or for other reasons. It ends the response to the original request,
and may occur when any other messages are expected.

		DB_HEADER: this indicates that an entire database copy is about to be sent.
It contains a string representing the UUID of the database which is about to
be sent, followed by a (packed) unsigned integer, representing the revision
number of the copy which is about to be sent.

		DB_FILENAME: this contains the name of the next file to be sent in a DB copy
operation.

		DB_FILEDATA: this contains the contents of a file in a DB copy operation.
The contents of the message are the details of the file.

		DB_FOOTER: this indicates the end of a DB copy operation. The contents of
this message are a single (packed) unsigned integer, which represents a
revision number. The newly copied database is not safe to make live until
changesets up to the specified revision have been applied.

		CHANGESET: this indicates that a changeset file (see below) is being sent.

Changeset files

Changes are represented by changeset files. When changeset logging is enabled
for a database, just before each commit a changeset file is created in
the database directory. This file contains a record of the changes made,
currently in the following format (but note that this format may change in
the future):

		12 bytes holding the string “FlintChanges”, “ChertChanges” or “GlassChanges”
(used to check that a file is a changeset file).

		The format of the changeset (as a variable length unsigned integer).

		The revision number of the database before the changes were applied (as a
variable length unsigned integer).

		The revision number of the database after the changes were applied (as a
variable length unsigned integer).

		A byte:
		0 if the changes can safely be applied to a live database

		1 if the changes cannot be applied while searching is in progress. (This
will be set if the database was modified in “DANGEROUS” mode).

		A series of items:
		A byte: 0 if there are no more items in the changeset, 1 if the next item
is a base file, 2 if the next item is a list of blocks.

		A (packed) string, holding a table name.

		If a base file:
		The letter of the base file (currently ‘A’ or ‘B’).

		The length of the file (as a variable length unsigned integer).

		The contents of the base file.

		If a list of blocks:
		The blocksize in use (for glass, divided by 2048).

		A list of items:
		A variable length unsigned integer holding 0 if the list is at an end,
or holding (block number + 1) otherwise.

		The contents of the block.

		A revision number that the database must be upgraded to, with more
changesets, before it is safe to be made live. This will normally be the
revision number of the database after the changes were applied, but if the
changeset was created by copying parts of the database without a read lock,
and modifications were made to the database while the copy was in progress,
parts of the copy may contain later revisions than intended - in this
situation further changesets will be needed to ensure that these parts of
the database are fully integrated.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		Xapian docs documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/python3/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Welcome to Xapian Python Bindings’s documentation!

Contents:

		Python3 bindings for Xapian
		Strings

		Unicode

		Exceptions

		Iterators

		MSet

		Non-Class Functions

		Query

		MatchDecider

		ValueRangeProcessor

		Apache and mod_python/mod_wsgi

		Test Suite

		Examples
		simplesearch.py

		simpleindex.py

		simpleexpand.py

		simplematchdecider.py

		xapian Package
		xapian Package

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/tests.html

 Navigation

 		
 index

 		Xapian docs documentation »

Tests

Contents

		Tests
		A Brief Guide to Running Tests

		A Brief Guide to Writing Tests

A Brief Guide to Running Tests

After a successful “make”, try “make check”.

It’s possible to run test cases individually, and get verbose output
when one fails, etc. For more information, see the “Running test
programs” section of HACKING.

A Brief Guide to Writing Tests

Test programs live in tests/. They mostly use a standard test
harness, in tests/harness/, which wraps each test, reports results,
and generally packages things up nicely. The test harness counts how
many testcases pass/fail/skip, catches signals and unhandled exceptions,
and so forth. It can also also check for memory leaks and accesses to
uninitialised values by making use of valgrind, for platforms which
valgrind supports (configure automatically enables use of valgrind if a
suitably recent version is detected).

A typical test program has three parts: the tests themselves (at the
top), a table of tests (at the bottom), and a tiny main which sets the
test harness in motion. It uses the table to figure out what the tests
are called, and what function to call to run them.

The most important test system for most people will be apitest. This
also uses the test harness, but has several tables of tests to be run
depending what facilities each backend supports. A lot of the work is
done by macros and helper functions, which may make it hard to work out
quite what is going on, but make life easier once you’ve grasped what’s
going on. The main() function and other bits are in apitest.cc,
and tests themselves are in various other C++ files starting api_. Each
one of these has its own tables for various different groups of tests
(eg: api_db.cc, which performs tests on the API that require a
database backend, has basic tests, a few specialised groups that only
contain one or two tests, tests that require a writable database, tests
that require a local database, and finally tests that require a remote
database).

To add a new api test, figure out what the test will be dependent on and
put it in the appropriate place (eg: if adding a test for a bug that
occurs while writing to a database, you want a writable database, so you
add a test to api_db.cc and reference it in the writabledb_tests
table).

Currently, there’s api_nodb.cc (no db required, largely testing
query construction and boundary conditions), api_posdb.cc (db with
positional information required) and api_db.cc (everything else,
with lots of subgroups of tests). It’s easiest to base a test on an
existing one.

You’ll notice in apitest.cc that it runs all appropriate test groups
against each backend that is being built. The backends are inmemory,
multi, chert, glass, remoteprog and remotetcp. If you need to
create a new test group with different requirements to any current ones,
put it in the appropriate api_ file (or create a new one, and add it
into Makefile.am) and remember to add the group to all pertinent
backends in apitest.cc.

Incidentally, when fixing bugs, it’s often better to write the test
before fixing the bug. Firstly, it’s easier to assure yourself that the
bug is (a) genuine, and (b) fixed, because you see the test go from fail
to pass (though sometimes you don’t get the testcase quite right, so
this isn’t doesn’t always work as well as it should). Secondly you’re
more likely to write the test carefully, because once you’ve fixed
something there’s often a feeling that you should commit it for the good
of the world, which tends to distract you.

The framework is done for you, so you don’t need to worry about that
much. You are responsible for doing two things:

		writing a minimal test or tests for the feature

		adding that test to the list of tests to be run

Adding the test is simple. There’s a test_desc array in each file that
comprises a set of tests (I’ll come to that in a minute), and you just
add another entry. The entry is an array consisting of a name for the
test and a pointer to the function that is the test. Easy. The procedure
is even simpler for apitest tests - there you just use DEFINE_TESTCASE
to define your new testcase, and a script picks it up and makes sure it
is run.

Look at the bottom of tests/stemtest.cc for the test_desc array.
Now look up about 20 lines to where the test functions are defined. You
need to write a function like these which will return true or false
depending on whether it failed or not.

In addition, there are a bunch of macros to help you perform standards
testing tasks. Things like TEST_EQUAL are all in
tests/harness/testsuite.h. They’re pretty simple to use.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-bindings/lua/docs/index.html

 Navigation

 		
 index

 		Xapian docs documentation »

Lua bindings for Xapian

These bindings require Lua version 5.1 or later, and have been tested with Lua 5.1 and 5.2.

The Lua bindings for Xapian are packaged in the xapian namespace,
and largely follow the C++ API, with the following differences and
additions.

The examples subdirectory contains examples showing how to use the
Lua bindings based on the simple examples from xapian-examples:
simpleindex.lua,
simplesearch.lua,
simpleexpand.lua.

There’s also
simplematchdecider.lua
which shows how to define a MatchDecider in Lua.

Unicode Support

In Xapian 1.0.0 and later, the Xapian::Stem, Xapian::QueryParser, and
Xapian::TermGenerator classes all assume text is in UTF-8. A Lua string
is an arbitrary sequence of values which have at least 8 bits (octets);
they map directly into the char type of the C compiler. Lua does not
reserve any value, including NUL. That means that Lua can store a UTF-8
string without problems.

Method names

Most methods are named the same as in the C++ API - the exceptions are:

end is a keyword in Lua, so such methods are renamed to
_end - e.g. in Lua you’d use mset:_end() to get an
end iterator for an MSet object called mset.
The C++ method get_description() is mapped to the
str function in Lua, so str(x) will return a string
describing object x.

Exceptions

Exceptions thrown by Xapian are translated into Lua xapian.Error objects
and raised as Lua errors, which you can catch by using pcall
like so:

ok,res = pcall(db.get_document, db, docid)
if ok then
 print("Got document data: " .. res:get_data())
else
 print("Got exception: " .. tostring(res))
end

Iterators

All iterators support next and equals methods
to move through and test iterators (as for all language bindings).
MSetIterator and ESetIterator also support prev. As “end” is
a keyword in Lua, we rename it to “_end” that means the end of the iterator.
The following shows an example of iterating the MSet to get the rank,
document id, and data for each entry in the MSet:

for m in mset:items() do
 print(m:get_rank() + 1, m:get_docid(), m:get_document():get_data())
end

Iterator dereferencing

C++ iterators are often dereferenced to get information, eg
(*it). With Lua these are all mapped to named methods, as
follows:

		Iterator
		Dereferencing method

		PositionIterator
		get_termpos

		PostingIterator
		get_docid

		TermIterator
		get_term

		ValueIterator
		get_value

		MSetIterator
		get_docid

		ESetIterator
		get_term()

Other methods, such as MSetIterator:get_document, are
available under the same names.

MSet

MSet objects have some additional methods to simplify access (these
work using the C++ array dereferencing):

		Method name
		Explanation

		get_hit(index)
		returns MSetItem at index

		get_documentPercentage(index)
		convert_to_percent(get_hit(index))

		get_document(index)
		get_hit(index):get_document()

		get_docid(index)
		get_hit(index):get_docid()

The C++ API contains a few non-class functions (the Database factory
functions, and some functions reporting version information), which are
wrapped like so for Lua:

		Xapian::version_string() is wrapped as xapian.version_string()

		Xapian::major_version() is wrapped as xapian.major_version()

		Xapian::minor_version() is wrapped as xapian.minor_version()

		Xapian::revision() is wrapped as xapian.revision()

		Xapian::Auto::open_stub() is wrapped as xapian.open_stub() (but is now deprecated)

		Xapian::Chert::open() is wrapped as xapian.chert_open() (but is now deprecated)

		Xapian::InMemory::open() is wrapped as xapian.inmemory_open()

		Xapian::Remote::open() is wrapped as xapian.remote_open() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

		Xapian::Remote::open_writable() is wrapped as xapian.remote_open_writable() (both the TCP and “program” versions are wrapped - the SWIG wrapper checks the parameter list to decide which to call).

Constants

For Lua, constants are wrapped as xapian.CONSTANT_NAME
or xapian.ClassName_CONSTANT_NAME.
So Xapian::DB_CREATE_OR_OPEN is available as
xapian.DB_CREATE_OR_OPEN, Xapian::Query::OP_OR is
available as xapian.Query_OP_OR, and so on.

As of 1.3.2, you can also use the form xapian.ClassName.CONSTANT_NAME, e.g.
xapian.Query.OP_OR.

Query

In C++ there’s a Xapian::Query constructor which takes a query operator and
start/end iterators specifying a number of terms or queries, plus an optional
parameter. In Lua, it is wrapped to accept Lua tables to give the terms/queries,
and you can specify a mixture of terms and queries if you wish. For example:

subq = xapian.Query(xapian.Query_OP_AND, {"hello", "world"})
q = xapian.Query(xapian.Query_OP_AND, {subq, "foo", xapian.Query("bar", 2)})

MatchAll and MatchNothing

These are wrapped for Lua as xapian.Query_MatchAll and
xapian.Query_MatchNothing.

As of 1.3.2, you can also use the forms xapian.Query.MatchAll and
xapian.Query.MatchNothing.

Enquire

There is an additional method get_matching_terms which takes
an MSetIterator and returns a list of terms in the current query which
match the document given by that iterator. You may find this
more convenient than using the TermIterator directly.

MatchDecider

Custom MatchDeciders can be created in Lua in the form of lua function; simply
function ensures you create a subclass of xapian.MatchDecider, which calls
the super-constructor, and overloads the operator method to callback the lua function
that will do the work. The simplest example (which does nothing
useful) would be as follows:

function mymatchdecider(doc)
 return 1
end

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/spelling.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Spelling Correction

Table of contents

		Xapian Spelling Correction
		Introduction

		Indexing
		Static spelling data

		Dynamic spelling data

		Searching
		QueryParser Integration

		Omega

		Algorithm
		Unicode Support

		Current Limitations
		Exactness

		Backend Support

		Prefixed Terms

		QueryParser changed word locations

		References

Introduction

Xapian provides functionality which can suggest corrections for misspelled
words in queries, or in other situations where it might be useful. The
suggestions can be generated dynamically from the data that has been indexed,
so the correction facility isn’t tied to particular languages, and can suggest
proper nouns or specialist technical terms.

Indexing

The spelling dictionary can be built with words from indexed text, or by adding
words from a static word list, or a combination of the two.

Static spelling data

If db is a Xapian::WritableDatabase, you can add to the spelling dictionary
using:

db.add_spelling(word, frequency_inc);

The frequency_inc parameter is optional, and defaults to 1.

And the corresponding way to remove from the spelling dictionary is:

db.remove_spelling(word, frequency_dec);

The frequency_dec parameter is optional and defaults to 1. If you try to
decrement the frequency of a word by more than its current value, it’s just
removed.

Dynamic spelling data

Xapian::TermGenerator can be configured to automatically add words from
indexed documents to the spelling dictionary:

Xapian::TermGenerator indexer;
indexer.set_database(db);
indexer.set_flags(indexer.FLAG_SPELLING);

Note that you must call the set_database() method as well as setting
FLAG_SPELLING so that Xapian knows where to add the spelling dictionary
entries.

If a document is removed or replaced, any spelling dictionary entries that
were added when it was originally indexed won’t be automatically removed.
This might seem like a flaw, but in practice it rarely causes problems, and
spellings in documents which were in the database, or in older versions of
documents, are still interesting. You can think of this as using the history
of the document collection as a source of spelling data.

If you really want these entries removed, you can run through the termlist of
each document you are about to remove or replace (if you indexed terms
unstemmed) and call remove_spelling() for each word.

Searching

QueryParser Integration

If FLAG_SPELLING_CORRECTION is passed to QueryParser::parse_query() and
QueryParser::set_database() has been called, the QueryParser will look for
corrections for words in the query. In Xapian 1.2.2 and earlier, it only
did this for terms which aren’t found in the database.

If a correction is found, then a modified version of the query string will be
generated which can be obtained by calling
QueryParser::get_corrected_query_string(). However, the original query string
will still be parsed, since you’ll often want to ask the user “Did you mean:
[...] ?” - if you want to automatically use the corrected form, just call
QueryParser::parse_query() on it.

Omega

As of Omega 1.1.1, omindex and scriptindex support indexing spelling correction
data and omega supports suggesting corrected spellings at search time. See the
Omega documentation [http://xapian.org/docs/omega/] for more details.

Algorithm

A list of candidate words is generated by matching trigrams (groups of 3
adjacent characters) in the candidates against those in the misspelled
word. As well as groups of adjacent characters, “starts” and “ends”
are generated with the first two and last two characters respectively
(e.g. “FISH” generates: “<start>FI”, “FIS”, “ISH”, and “SH<end>”).

This technique alone would missing many single-edit errors in two and three
character words, so we handle these specially as follows:

For a three character word (e.g. “ABC”), we generate trigrams for the two
transposed forms too (“BAC” and “ACB”), in addition to “<start>AB”, “ABC”,
and “BC<end>”.

For a two character word (e.g. “AB”), we generate the special start and end
trigrams for the reversed form (i.e. “BA”), so the trigrams are “<start>AB”,
“AB<end>”, “<start>BA”, and “BA<end>”.

And for two, three, and four character words, we generate “bookend” bigrams
consisting of the prefix ‘B’ followed by the first and last letters. This
allows us to handle transposition of the middle two characters of a four
letter word, substitution or deletion of the middle character of a three
letter word, or insertion in the middle of a two letter word.

Note that we don’t attempt to suggest corrections for single character words
at all, since the suggestions are unlikely to be of good quality (we’d always
suggest the same correction for a given database, probably “a” for English).
We also don’t currently attempt to suggest substitution corrections for two
character words, though this would perhaps be useful in some cases.

Those candidates with the better trigram matches are compared to the misspelled
word by calculating the “edit distance” - that’s the smallest number of
operations required to turn one word into another. The allowed operations
are: insert a character; delete a character; change a character to another;
transpose two adjacent characters. The candidate with the smallest edit
distance is found, and if more than one word has the smallest edit distance,
that which occurs the most times is chosen. If there’s a tie of this too,
it’s essentially arbitrary which is chosen.

If the word passed in is in the spelling dictionary, then a candidate will
still be returned if one is found with the same or greater frequency.

The maximum edit distance to consider can be specified as an optional parameter
to Xapian::Database::get_spelling_suggestion(). If not specified, the default
is 2, which generally does a good job. 3 is also a reasonable choice in many
cases. For most uses, 1 is probably too low, and 4 or more probably too high.

Unicode Support

Trigrams are generated at the byte level, but the edit distance calculation
currently works with Unicode characters, so get_spelling_suggestion() should
suggest suitable spelling corrections respecting the specified (or default)
edit distance threshold.

Current Limitations

Exactness

Because Xapian only tests the edit distance for terms which match
well (or at all!) on trigrams, it may not always suggest the same answer that
would be found if all possible words were checked using the edit distance
algorithm. However, the best answer will usually be found, and an exhaustive
search would be prohibitively expensive for many uses.

Backend Support

Currently spelling correction is supported for chert, and glass
databases. It works with a single database or multiple databases (use
Database::add_database() as usual). We’ve no plans to support it for the
InMemory backend, but we do intend to support it for
the remote backend in the future.

Prefixed Terms

Currently spelling correction ignores prefixed terms.

QueryParser changed word locations

The QueryParser doesn’t currently report the locations of changed words in
the query string, so it’s a bit fiddly to mark up the altered words specially
in HTML output, for example.

References

The algorithm used to calculate the edit distance is based on that described in
the paper “An extension of Ukkonen’s enhanced dynamic programming ASM
algorithm” by Hal Berghel, University of Arkansas, and David Roach, Acxiom
Corporation. It’s available online at:
http://berghel.net/publications/asm/asm.php

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

xapian-core/docs/postingsource.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian::PostingSource

Table of contents

		Xapian::PostingSource
		Introduction

		Anatomy

		Examples

		Multiple databases, and remote databases

Introduction

Xapian::PostingSource is an API class which you can subclass to feed data to
Xapian’s matcher. This feature can be made use of in a number of ways - for
example:

As a filter - a subclass could return a stream of document ids to filter a
query against.

As a weight boost - a subclass could return every document, but with a
varying weight so that certain documents receive a weight boost. This could
be used to prefer documents based on some external factor, such as age,
price, proximity to a physical location, link analysis score, etc.

As an alternative way of ranking documents - if the weighting scheme is set
to Xapian::BoolWeight, then the ranking will be entirely by the weight
returned by Xapian::PostingSource.

Anatomy

When first constructed, a PostingSource is not tied to a particular database.
Before Xapian can get any postings (or statistics) from the source, it needs to
be supplied with a database. This is performed by the init() method, which is
passed a single parameter holding the database to use. This method will always
be called before asking for any information about the postings in the list. If
a posting source is used for multiple searches, the init() method will be
called before each search; implementations must cope with init() being called
multiple times, and should always use the database provided in the most recent
call:

virtual void init(const Xapian::Database & db) = 0;

Three methods return statistics independent of the iteration position.
These are upper and lower bounds for the number of documents which can
be returned, and an estimate of this number:

virtual Xapian::doccount get_termfreq_min() const = 0;
virtual Xapian::doccount get_termfreq_max() const = 0;
virtual Xapian::doccount get_termfreq_est() const = 0;

These methods are pure-virtual in the base class, so you have to define
them when deriving your subclass.

It must always be true that:

get_termfreq_min() <= get_termfreq_est() <= get_termfreq_max()

PostingSources must always return documents in increasing document ID order.

After construction, a PostingSource points to a position before the first
document id - so before a docid can be read, the position must be advanced
by calling next(), skip_to() or check().

The get_weight() method returns the weight that you want to contribute
to the current document. This weight must always be >= 0:

virtual double get_weight() const;

The default implementation of get_weight() returns 0, for convenience when
deriving “weight-less” subclasses.

You also need to specify an upper bound on the value which get_weight() can
return, which is used by the matcher to perform various optimisations. You
should try hard to find a bound for efficiency, but if there really isn’t one
then you can set DBL_MAX:

void get_maxweight(double max_weight);

This method specifies an upper bound on what get_weight() will return from
now on (until the next call to init()). So if you know that the upper
bound has decreased, you should call set_maxweight() with the new reduced
bound.

One thing to be aware of is that currently calling set_maxweight() during
the match triggers an recursion through the postlist tree to recalculate the
new overall maxweight, which takes a comparable amount of time to calculating
the weight for a matching document. If your maxweight reduces for nearly
every document, you may want to profile to see if it’s beneficial to notify
every single change. Experiments with a modified FixedWeightPostingSource
which forces a pointless recalculation for every document suggest a worst case
overhead in search times of about 37%, but reports of profiling results for
real world examples are most welcome. In real cases, this overhead could
easily be offset by the extra scope for matcher optimisations which a tighter
maxweight bound allows.

A simple approach to reducing the number of calculations is only to do it every
N documents. If it’s cheap to calculate the maxweight in your posting source,
a more sophisticated strategy might be to decide an absolute maximum number of
times to update the maxweight (say 100) and then to call it whenever:

last_notified_maxweight - new_maxweight >= original_maxweight / 100.0

This ensures that only reasonably significant drops result in a recalculation
of the maxweight.

Since get_weight() must always return >= 0, the upper bound must clearly
also always be >= 0 too. If you don’t call get_maxweight() then the
bound defaults to 0, to match the default implementation of get_weight().

If you want to read the currently set upper bound, you can call:

double get_maxweight() const;

This is just a getter method for a member variable in the
Xapian::PostingSource class, and is inlined from the API headers, so
there’s no point storing this yourself in your subclass - it should be just as
efficient to call get_maxweight() whenever you want to use it.

The at_end() method checks if the current iteration position is past the
last entry:

virtual bool at_end() const = 0;

The get_docid() method returns the document id at the current iteration
position:

virtual Xapian::docid get_docid() const = 0;

There are three methods which advance the current position. All of these take
a Xapian::Weight parameter min_wt, which indicates the minimum weight
contribution which the matcher is interested in. The matcher still checks
the weight of documents so it’s OK to ignore this parameter completely, or to
use it to discard only some documents. But it can be useful for optimising
in some cases.

The simplest of these three methods is next(), which simply advances the
iteration position to the next document (possibly skipping documents with
weight contribution < min_wt):

virtual void next(double min_wt) = 0;

Then there’s skip_to(). This advances the iteration position to the next
document with document id >= that specified (possibly also skipping documents
with weight contribution < min_wt):

virtual void skip_to(Xapian::docid did, double min_wt);

A default implementation of skip_to() is provided which just calls
next() repeatedly. This works but skip_to() can often be implemented
much more efficiently.

The final method of this group is check(). In some cases, it’s fairly
cheap to check if a given document matches, but the requirement that
skip_to() must leave the iteration position on the next document is
rather costly to implement (for example, it might require linear scanning
of document ids). To avoid this where possible, the check() method
allows the matcher to just check if a given document matches:

virtual bool check(Xapian::docid did, double min_wt);

The return value is true if the method leaves the iteration position valid,
and false if it doesn’t. In the latter case, next() will advance to
the first matching position after document id did, and skip_to() will
act as it would if the iteration position was the first matching position
after did.

The default implementation of check() is just a thin wrapper around
skip_to() which returns true - you should use this if skip_to() incurs
only a small extra cost.

There’s also a method to return a string describing this object:

virtual std::string get_description() const;

The default implementation returns a generic answer. This default is provided
to avoid forcing you to provide an implementation if you don’t really care
what get_description() gives for your sub-class.

Examples

Here is an example of a Python PostingSource which contributes additional
weight from some external source (note that in Python, you call next()
on an iterator to get each item, including the first, which is exactly
the semantics we need to implement here):

class ExternalWeightPostingSource(xapian.PostingSource):
 """
 A Xapian posting source returning weights from an external source.
 """
 def __init__(self, db, wtsource):
 xapian.PostingSource.__init__(self)
 self.db = db
 self.wtsource = wtsource

 def init(self, db):
 self.alldocs = db.postlist('')

 def get_termfreq_min(self): return 0
 def get_termfreq_est(self): return self.db.get_doccount()
 def get_termfreq_max(self): return self.db.get_doccount()

 def next(self, minweight):
 try:
 self.current = self.alldocs.next()
 except StopIteration:
 self.current = None

 def skip_to(self, docid, minweight):
 try:
 self.current = self.alldocs.skip_to(docid)
 except StopIteration:
 self.current = None

 def at_end(self):
 return self.current is None

 def get_docid(self):
 return self.current.docid

 def get_maxweight(self):
 return self.wtsource.get_maxweight()

 def get_weight(self):
 doc = self.db.get_document(self.current.docid)
 return self.wtsource.get_weight(doc)

ExternalWeightPostingSource doesn’t restrict which documents match - it’s
intended to be combined with an existing query using OP_AND_MAYBE like so:

extwtps = xapian.ExternalWeightPostingSource(db, wtsource)
query = xapian.Query(query.OP_AND_MAYBE, query, xapian.Query(extwtps))

The wtsource would be a class like this one:

class WeightSource(object):
 def get_maxweight(self):
 return 12.34;

 def get_weight(self, doc):
 return some_func(doc.get_docid())

Multiple databases, and remote databases

In order to work with searches across multiple databases, or in remote
databases, some additional methods need to be implemented in your
Xapian::PostingSource subclass. The first of these is clone(), which is
used for multi database searches. This method should just return a newly
allocated instance of the same posting source class, initialised in the same
way as the source that clone() was called on. The returned source will be
deallocated by the caller (using “delete” - so you should allocate it with
“new”).

If you don’t care about supporting searches across multiple databases, you can
simply return NULL from this method. In fact, the default implementation does
this, so you can just leave the default implementation in place. If
clone() returns NULL, an attempt to perform a search with multiple
databases will raise an exception:

virtual PostingSource * clone() const;

To work with searches across remote databases, you need to implement a few more
methods. Firstly, you need to implement the name() method. This simply
returns the name of your posting source (fully qualified with any namespace):

virtual std::string name() const;

Next, you need to implement the serialise and unserialise methods. The
serialise() method converts all the settings of the PostingSource to a
string, and the unserialise() method converts one of these strings back
into a PostingSource. Note that the serialised string doesn’t need to include
any information about the current iteration position of the PostingSource:

virtual std::string serialise() const;
virtual PostingSource * unserialise(const std::string &s) const;

Finally, you need to make a remote server which knows about your PostingSource.
Currently, the only way to do this is to modify the source slightly, and
compile your own xapian-tcpsrv. To do this, you need to edit
xapian-core/bin/xapian-tcpsrv.cc and find the
register_user_weighting_schemes() function. If MyPostingSource is your
posting source, at the end of this function, add these lines:

Xapian::Registry registry;
registry.register_postingsource(MyPostingSource());
server.set_registry(registry);

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

xapian-core/docs/overview.html

 Navigation

 		
 index

 		Xapian docs documentation »

Overview

This document provides an introduction to the native C++ Xapian API.
This API provides programmers with the ability to index and search
through (potentially very large) bodies of data using probabilistic
methods.

Note: The portion of the API currently documented here covers only the
part of Xapian concerned with searching through existing databases, not
that concerned with creating them.

This document assumes you already have Xapian installed, so if you
haven’t, it is a good idea to read Installing Xapian
first.

You may also wish to read the QuickStart reference,
for some simple worked examples of Xapian usage, and the Introduction
to Information Retrieval for a background into the
Information Retrieval theories behind Xapian.

This document does not detail the exact calling conventions (parameters
passed, return value, exceptions thrown, etc...) for each method in the
API. For such documentation, you should refer to the automatically
extracted documentation, which is generated from detailed comments in
the source code, and should thus remain up-to-date and accurate. This
documentation is generated using the
Doxygen [http://www.doxygen.org/] application. To save you having
to generate this documentation yourself, we include the built
version in our distributions, and also keep
the latest version [http://xapian.org/docs/apidoc/html/index.html] on
our website.

Design Principles

API classes are either very lightweight or a wrapper around a reference
counted pointer (this style of class design is sometimes known as PIMPL
for “Private IMPLementation”). In either case copying is a cheap
operation as classes are at most a few words of memory.

API objects keep a reference to other objects they rely on so the user
doesn’t need to worry about whether an object is still valid or not.

Where appropriate, API classes can be used as containers and iterators
just like those in the C++ STL.

Errors and exceptions

It is important to understand the errors which may be caused by the
operations which you are trying to perform.

This becomes particularly relevant when using a large system, with such
possibilities as databases which are being updated while you search
through them, and distributed enquiry systems.

Errors in Xapian are all reported by means of exceptions. All exceptions
thrown by Xapian will be subclasses of
Xapian::Error. Note that
Xapian::Error is an abstract class; thus you must catch exceptions
by reference rather than by value.

There are two flavours of error, derived from Xapian::Error:

		Xapian::LogicError
- for error conditions due to programming errors, such as a misuse of
the API. A finished application should not receive these errors
(though it would still be sensible to catch them).

		Xapian::RuntimeError
- for error conditions due to run time problems, such as failure to
open a database. You must always be ready to cope with such errors.

Each of these flavours is further subdivided, such that any particular
error condition can be trapped by catching the appropriate exception. If
desired, a human readable explanation of the error can be retrieved by
calling
Xapian::Error::get_msg().

In addition, standard system errors may occur: these will be reported by
throwing appropriate exceptions. Most notably, if the system runs out of
memory, a std::bad_alloc exception will be thrown.

Terminology

Databases

These may also occasionally be called Indexes. In Xapian (as opposed
to a database package) a database consists of little more than indexed
documents: this reflects the purpose of Xapian as an information
retrieval system, rather than an information storage system.

The exact contents of a database depend on the type (see “Database
Types” for more details of the database types
currently provided).

Queries

The information to be searched for is specified by a Query. In Xapian,
queries are made up of a structured boolean tree, upon which
probabilistic weightings are imposed: when the search is performed, the
documents returned are filtered according to the boolean structure, and
weighted (and sorted) according to the probabilistic model of
information retrieval.

Memory handling

The user of Xapian does not usually need to worry about how Xapian
performs its memory allocation: Xapian objects can all be created and
deleted as any other C++ objects. The convention is that whoever creates
an object is ultimately responsible for deleting it. This becomes
relevant when passing a pointer to data to Xapian: it will be the caller’s
responsibility to delete the object once it is finished with. Where
an object is set by one API call and used by another, Xapian will assume
that such pointers remain valid.

The Xapian::Enquire class

The Xapian::Enquire
class is central to all searching operations. It provides an interface
for

		Specifying the database, or databases, to search across.

		Specifying a query to perform.

		Specifying a set of documents which a user considers relevant.

		Given the supplied information, returning a ranked set of documents
for the user.

		Given the supplied information, suggesting a ranked set of terms to
add to the query.

		Returning information about the documents which matched, such as
their associated data, and which terms from the query were found
within them.

A typical enquiry session will consist of most of these operations, in
various orders. The Xapian::Enquire class presents as few restrictions
as possible on the order in which operations should be performed.
Although you must set the query before any operation which uses it, you
can call any of the other methods in any order.

Many operations performed by the Xapian::Enquire class are performed
lazily (ie, just before their results are needed). This need not concern
the user except to note that, as a result, errors may not be reported as
soon as would otherwise be expected.

Specifying a database

When creating a Xapian::Enquire object, a database to search must be
specified. Databases are specified by creating a Xapian::Database
object. Generally, you can
just construct the object, passing the pathname to the database. Xapian
looks at the path and autodetects the database type.

With the Remote backend, you need to use the Xapian::Remote::open()
factory function. The parameters you need to pass depend on whether
you’re using the TCP or prog variant, and whether you are creating a read-only
or a writable database.

You can also create a “stub database” file which lists one or more
databases. These files are recognised by the autodetection in the
Database constructor (if the pathname is file rather than a directory,
it’s treated as a stub database file, or if the pathname is a directory
containing a file called XAPIANDB) or you can open them explicitly
using Xapian::DB_BACKEND_STUB. The stub database format specifies one
database per line. For example:

remote localhost:23876
chert /var/spool/xapian/webindex

Database types

The current types understood by Xapian are:

		auto

		This isn’t an actual database format, but rather auto-detection of one of
the disk based backends (e.g. “chert” or “glass”) from a single specified
path (which can be to a file or directory).

		brass

		Brass was the current “under development” database format in Xapian 1.2.x,
1.3.0 and 1.3.1. It was renamed to ‘glass’ in Xapian 1.3.2 because we
decided to use backend names in ascending alphabetical order to make it
easier to understand which backend is newest, and since ‘flint’ was used
recently, we skipped over ‘d’, ‘e’ and ‘f’.

		chert

		Chert is the default backend in Xapian 1.2.x. It supports incremental
modifications, concurrent single-writer and multiple-reader access to a
database. It’s very efficient and highly scalable.

		flint

		Flint was the default backend in Xapian 1.0.x, and was deprecated in
1.2.x and removed in 1.3.0. If you want to migrate an existing Flint
database to Chert, see the ‘Admin Notes’
for a way to do this.

		glass

		Glass is the current development backend (renamed from Brass in 1.3.2),
It is intended to be the default backend in Xapian 1.4.x.

		inmemory

		This type is a database held entirely in memory. It was originally written
for testing purposes only, but may prove useful for building up temporary
small databases.

		quartz

		Quartz was the default backend prior to Xapian 1.0, and has been removed as
of Xapian 1.1.0. If you want to migrate an existing Quartz database to
Flint, see Admin Notes
for a way to do this.

		remote

		This can specify either a “program” or TCP remote backend, for example:

remote :ssh xapian-prog.example.com xapian-progsrv /srv/xapian/db1

or:

remote xapian-tcp.example.com:12345

If the first character of the second word is a colon (:), then this is
skipped and the remainder of the line is used as the command to run
xapian-progsrv and the “program” variant of the remote backend is used.
Otherwise the TCP variant of the remote backend is used, and the rest of
the line specifies the host and port to connect to.

Multiple databases

Xapian can search across several databases as easily as searching across
a single one. Simply call
Xapian::Database::add_database()
for each database that you wish to search through.

You can also set up “pre-canned” listed of databases to search over
using a “stub database” - see above for details.

Specifying a query

Xapian implements both boolean and probabilistic searching. There are
two obvious ways in which a pure boolean query could be combined with a
pure probabilistic query:

		First perform the boolean search to create a subset of the whole
document collection, and then do the probabilistic search on this
subset, or

		Do the probabilistic search, and then filter out the resulting
documents with a boolean query.

There is in fact a subtle difference in these two approaches. In the
first, the collection statistics for the probabilistic query will be
determined by the document subset which is obtained by running the
boolean query. In the second, the collection statistics for the
probabilistic query are determined by the whole document collection.
These differences can affect the final result.

Suppose for example the boolean query is being used to retrieve
documents in English in a database containing English and French
documents. A word like “grand”, exists in both languages (with similar
meanings), but is more common in French than English. In the English
subset it could therefore be expected to have a higher weight than it
would get in the joint English and French databases.

Xapian takes the second approach simply because this can be implemented
very efficiently. The first approach is more exact, but inefficient to
implement.

Rather than implementing this approach as described above and first
performing the probabilistic search and then filtering the results,
Xapian actually performs both tasks simultaneously. This allows various
optimisations to be performed, such as giving up on calculating a
boolean AND operation when the probabilistic weights that could result
from further documents can have no effect on the result set. These
optimisations have been found to often give a several-fold performance
increase. The performance is particularly good for queries containing
many terms.

A query for a single term

A search query is represented by a
Xapian::Query object. The
simplest useful query is one which searches for a single term (and
several of these can be combined to form more complex queries). A single
term query can be created as follows (where term is a
std::string holding the term to be searched for):

Xapian::Query query(term);

A term in Xapian is represented simply by a string of bytes. Usually, when
searching text, these bytes will represent the characters of the word which
the term represents, but during the information retrieval process Xapian
attaches no specific meaning to the term.

This constructor actually takes a couple of extra parameters, which may
be used to specify positional and frequency information for terms in the
query:

Xapian::Query(const string & tname_,
 Xapian::termcount wqf_ = 1,
 Xapian::termpos term_pos_ = 0)

The wqf (Within Query Frequency) is a measure of how common a term is
in the query. This isn’t useful for a single term query unless it is going
to form part of a more complex query. In that case, it’s particularly
useful when generating a query from an existing document, but may also be
used to increase the “importance” of a term in a query. Another way to
increase the “importance” of a term is to use OP_SCALE_WEIGHT. But if
the intention is simply to ensure that a particular term is in the query
results, you should use a boolean AND or AND_MAYBE rather than setting a
high wqf.

The term_pos represents the position of the term in the query.
Again, this isn’t useful for a single term query by itself, but is used
for phrase searching, passage retrieval, and other operations which
require knowledge of the order of terms in the query (such as returning
the set of matching terms in a given document in the same order as they
occur in the query). If such operations are not required, the default
value of 0 may be used.

Note that it may not make much sense to specify a wqf other than 1 when
supplying a term position (unless you are trying to affect the
weighting, as previously described).

Note also that the results of Xapian::Query(tname, 2) and
Xapian::Query(Xapian::Query::OP_OR, Xapian::Query(tname), Xapian::Query(tname))
are exactly equivalent.

Compound queries

Compound queries can be built up from single term queries by combining
them a connecting operator. Most operators can operate on either a
single term query or a compound query. You can combine pair-wise using
the following constructor:

Xapian::Query(Xapian::Query::op op_,
 const Xapian::Query & left,
 const Xapian::Query & right)

The two most commonly used operators are Xapian::Query::OP_AND and
Xapian::Query::OP_OR, which enable us to construct boolean queries
made up from the usual AND and OR operations. But in addition to this, a
probabilistic query in its simplest form, where we have a list of terms
which give rise to weights that need to be added together, is also made
up from a set of terms joined together with Xapian::Query::OP_OR.

Some of the available Xapian::Query::op operators are:

		Xapian::Query::OP_AND
		Return documents returned by both subqueries.

		Xapian::Query::OP_OR
		Return documents returned by either subquery.

		Xapian::Query::OP_AND_NOT
		Return documents returned by the left subquery but not the right subquery.

		Xapian::Query::OP_FILTER
		As Xapian::Query::OP_AND, but use only weights from left subquery.

		Xapian::Query::OP_AND_MAYBE
		Return documents returned by the left subquery, but adding document weights from both subqueries.

		Xapian::Query::OP_XOR
		Return documents returned by one subquery only.

		Xapian::Query::OP_NEAR
		Return documents where the terms are with the specified distance of each other.

		Xapian::Query::OP_PHRASE
		Return documents where the terms are with the specified distance of each other and in the given order.

		Xapian::Query::OP_ELITE_SET
		Select an elite set of terms from the subqueries, and perform a query with all those terms combined as an OR query.

Understanding queries

Each term in the query has a weight in each document. Each document may
also have an additional weight not associated with any of the terms. By
default the probabilistic weighting scheme BM25 is used
to provide the formulae which give these weights.

A query can be thought of as a tree structure. At each node is an
Xapian::Query::op operator, and on the left and right branch are two
other queries. At each leaf node is a term, t, transmitting documents
and scores, D and wD(t), up the tree.

A Xapian::Query::OP_OR node transmits documents from both branches up
the tree, summing the scores when a document is found in both the left
and right branch. For example,

 docs 1 8 12 16 17 18
 scores 7.3 4.1 3.2 7.6 3.8 4.7 ...
 |
 |
 Xapian::Query::OP_OR
 / \
 / \
 / \
 / \
docs 1 12 16 17 1 8 16 18
scores 3.1 3.2 3.1 3.8 ... 4.2 4.1 4.5 4.7 ...

A Xapian::Query::OP_AND node transmits only the documents found on both
branches up the tree, again summing the scores,

 docs 1 16
 scores 7.3 7.6 ...
 |
 |
 Xapian::Query::OP_AND
 / \
 / \
 / \
 / \
docs 1 12 16 17 1 8 16 18
scores 3.1 3.2 3.1 3.8 ... 4.2 4.1 4.5 4.7 ...

A Xapian::Query::OP_AND_NOT node transmits up the tree the documents
on the left branch which are not on the right branch. The scores are
taken from the left branch. For example, again summing the scores,

 docs 12 17
 scores 3.2 3.8 ...
 |
 |
 Xapian::Query::OP_AND_NOT
 / \
 / \
 / \
 / \
docs 1 12 16 17 1 8 16 18
scores 3.1 3.2 3.1 3.8 ... 4.2 4.1 4.5 4.7 ...

A Xapian::Query::OP_AND_MAYBE node transmits the documents up the tree
from the left branch only, but adds in the score from the right branch
for documents which occur on both branches. For example,

 docs 1 12 16 17
 scores 7.3 3.2 7.6 3.8 ...
 |
 |
 Xapian::Query::OP_AND_MAYBE
 / \
 / \
 / \
 / \
docs 1 12 16 17 1 8 16 18
scores 3.1 3.2 3.1 3.8 ... 4.2 4.1 4.5 4.7 ...

Xapian::Query::OP_FILTER is like Xapian::Query::OP_AND, but weights
are only transmitted from the left branch. For example,

 docs 1 16
 scores 3.1 3.1 ...
 |
 |
 Xapian::Query::OP_FILTER
 / \
 / \
 / \
 / \
docs 1 12 16 17 1 8 16 18
scores 3.1 3.2 3.1 3.8 ... 4.2 4.1 4.5 4.7 ...

Xapian::Query::OP_XOR is like Xapian::Query::OP_OR, but documents on
both left and right branches are not transmitted up the tree. For
example,

 docs 8 12 17 18
 scores 4.1 3.2 3.8 4.7 ...
 |
 |
 Xapian::Query::OP_XOR
 / \
 / \
 / \
 / \
docs 1 12 16 17 1 8 16 18
scores 3.1 3.2 3.1 3.8 ... 4.2 4.1 4.5 4.7 ...

A query can therefore be thought of as a process for generating an MSet
from the terms at the leaf nodes of the query. Each leaf node gives rise
to a posting list of documents with scores. Each higher level node gives
rise to a similar list, and the root node of the tree contains the final
set of documents with scores (or weights), which are candidates for
going into the MSet. The MSet contains the documents which get the
highest weights, and they are held in the MSet in weight order.

It is important to realise that within Xapian the structure of a query
is optimised for best performance, and it undergoes various
transformations as the query progresses. The precise way in which the
query is built up is therefore of little importance to Xapian - for
example, you can AND together terms pair-by-pair, or combine several
using AND on a std::vector of terms, and Xapian will build the same
structure internally.

Using queries

Probabilistic queries

A plain probabilistic query is created by connecting terms together with
Xapian::Query::OP_OR operators. For example,

Xapian::Query query("regulation");
query = Xapian::Query(Xapian::Query::OP_OR, query, Xapian::Query("import"));
query = Xapian::Query(Xapian::Query::OP_OR, query, Xapian::Query("export"));
query = Xapian::Query(Xapian::Query::OP_OR, query, Xapian::Query("canned"));
query = Xapian::Query(Xapian::Query::OP_OR, query, Xapian::Query("fish"));

This creates a probabilistic query with terms regulation, import,
export, canned and fish.

In fact this style of creation is so common that there is the shortcut
construction:

vector<string> terms;
terms.push_back("regulation");
terms.push_back("import");
terms.push_back("export");
terms.push_back("canned");
terms.push_back("fish");

Xapian::Query query(Xapian::Query::OP_OR, terms.begin(), terms.end());

Boolean queries

Suppose now we have this Boolean query,

('EEC' - 'France') and ('1989' or '1991' or '1992') and 'Corporate_Law'

This could be built up as bquery like this,

Xapian::Query bquery1(Xapian::Query::OP_AND_NOT, "EEC", "France");

Xapian::Query bquery2("1989");
bquery2 = Xapian::Query(Xapian::Query::OP_OR, bquery2, "1991");
bquery2 = Xapian::Query(Xapian::Query::OP_OR, bquery2, "1992");

Xapian::Query bquery3("Corporate_Law");

Xapian::Query bquery(Xapian::Query::OP_AND, bquery1, Xapian::Query(Xapian::Query::OP_AND(bquery2, bquery3)));

and this can be attached as a filter to query to run the
probabilistic query with a Boolean filter,

query = Xapian::Query(Xapian::Query::OP_FILTER, query, bquery);

If you want to run a pure boolean query, then set BoolWeight as the
weighting scheme (by calling Enquire::set_weighting_scheme() with
argument BoolWeight()).

Plus and minus terms

A common requirement in search engine functionality is to run a
probabilistic query where some terms are required to index all the
retrieved documents (+ terms), and others are required to index none
of the retrieved documents (- terms). For example,

regulation import export +canned +fish -japan

the corresponding query can be set up by,

vector<string> plus_terms;
vector<string> minus_terms;
vector<string> normal_terms;

plus_terms.push_back("canned");
plus_terms.push_back("fish");

minus_terms.push_back("japan");

normal_terms.push_back("regulation");
normal_terms.push_back("import");
normal_terms.push_back("export");

Xapian::Query query(Xapian::Query::OP_AND_MAYBE,
 Xapian::Query(Xapian::Query::OP_AND, plus_terms.begin(), plus_terms.end());
 Xapian::Query(Xapian::Query::OP_OR, normal_terms.begin(), normal_terms.end()));

query = Xapian::Query(Xapian::Query::OP_AND_NOT,
 query,
 Xapian::Query(Xapian::Query::OP_OR, minus_terms.begin(), minus_terms.end()));

Undefined queries

Performing a match with an undefined query matches nothing, which is
sometimes useful. Composing an undefined query with operators behaves
just as it would for any subquery which matches nothing.

Retrieving the results of a query

To get the results of the query, call the Enquire::get_mset() method:

Xapian::MSet Xapian::Enquire::get_mset(Xapian::doccount first,
 Xapian::doccount maxitems,
 const Xapian::RSet * rset = 0,
 const Xapian::MatchDecider * mdecider = 0) const

When asking for the results, you must specify (in first) the first
item in the result set to return, where the numbering starts at zero (so
a value of zero corresponds to the first item returned being that with
the highest score, and a value of 10 corresponds to the first 10 items
being ignored, and the returned items starting at the eleventh).

You must also specify (in maxitems) the maximum number of items to
return. Unless there are not enough matching items, precisely this
number of items will be returned. If maxitems is zero, no items will
be returned, but the usual statistics (such as the maximum possible
weight which a document could be assigned by the query) will be
calculated. (See “The Xapian::MSet” below).

The Xapian::MSet

Query results are returned in an
Xapian::MSet object. The
results can be accessed using a
Xapian::MSetIterator
which returns the matches in descending sorted order of relevance (so
the most relevant document is first in the list). Each Xapian::MSet
entry comprises a document id, and the weight calculated for that
document.

An Xapian::MSet also contains various information about the search
result:

		firstitem

		The index of the first item in the result which was put into the MSet.
(Corresponding to first in Xapian::Enquire::get_mset())

		max_attained

		The greatest weight which is attained in the full results of the search.

		max_possible

		The maximum possible weight in the MSet.

		docs_considered

		The number of documents matching the query considered for the MSet. This
provides a lower bound on the number of documents in the database which
have a weight greater than zero. Note that this value may change if the
search is recalculated with different values for first or
max_items.

See the automatically extracted
documentation for more details
of these fields.

The Xapian::MSet also provides methods for converting the score
calculated for a given document into a percentage value, suitable for
displaying to a user. This may be done using the
convert_to_percent()
methods:

int Xapian::MSet::convert_to_percent(const Xapian::MSetIterator & item) const
int Xapian::MSet::convert_to_percent(double wt) const

These methods return a value in the range 0 to 100, which will be 0 if
and only if the item did not match the query at all.

Accessing a document

A document in the database is accessed via a
Xapian::Document
object. This can be obtained by calling
Xapian::Database::get_document().
The returned Xapian::Document is a reference counted handle so
copying is cheap.

Each document can have the following types of information associated
with it:

		document data - this is an arbitrary block of data accessed using
Xapian::Document::get_data().
The contents of the document data can be whatever you want and in
whatever format. Often it contains fields such as a URL or other
external UID, a document title, and an excerpt from the document
text. If you wish to interoperate with Omega, it should contain
name=value pairs, one per line (recent versions of Omega also support
one field value per line, and can assign names to line numbers in the
query template).

		terms and positional information - terms index the document (like
index entries in the back of a book); positional information records
the word offset into the document of each occurrence of a particular
term. This is used to implement phrase searching and the NEAR
operator.

		document values - these are arbitrary pieces of data which are stored
so they can be accessed rapidly during the match process (to allow
sorting collapsing of duplicates, etc). Each value is stored in a
numbered slot so you can have several for each document. There’s
currently no length limit, but you should keep them short for
efficiency.

There’s some overlap in what you can do with terms and with values. A
simple boolean operator (e.g. document language) is definitely better
done using a term and OP_FILTER.

Using a value allows you to do things you can’t do with terms, such as
“sort by price”, or “show only the best match for each website”. You can
also perform filtering with a value which is more sophisticated than can
easily be achieved with terms, for example: find matches with a price
between $100 and $900. Omega uses boolean terms to perform date range
filtering, but this might actually be better done using a value (the
code in Omega was written before values were added to Xapian).

Specifying a relevance set

Xapian supports the idea of relevance feedback: that is, of allowing the
user to mark documents as being relevant to the search, and using this
information to modify the search. This is supported by means of
relevance sets, which are simply sets of document ids which are marked
as relevant. These are held in
Xapian::RSet objects, one
of which may optionally be supplied to Xapian in the rset
parameter when calling Xapian::Enquire::get_mset().

Match options

There are various additional options which may be specified when
performing the query. These are specified by calling various methods of
the Xapian::Enquire object.
The options are as follows.

		collapse key

		Each document in a database may have a set of numbered value slots. The
contents of each value slot is a string of arbitrary length. The
set_collapse_key(Xapian::valueno collapse_key) method specifies a
value slot number upon which to remove duplicates. Only the most
recently set duplicate removal key is active at any time, and the
default is to perform no duplicate removal.

		percentage cutoff

		It may occasionally be desirable to exclude any documents which have a
weight less than a given percentage value. This may be done using
set_cutoff(Xapian::percent percent_cutoff).

		sort direction

		Some weighting functions may frequently result in several documents being
returned with the same weight. In this case, by default, the documents will
be returned in ascending document id order. This can be changed by using
set_docid_order() to set the sort direction.

set_docid_order(Xapian::Enquire::DESCENDING) may be useful, for
example, when it would be best to return the newest documents, and new
documents are being added to the end of the database (which is what happens
by default).

Match decision functors

Sometimes it may be useful to return only documents matching criteria
which can’t be easily represented by queries. This can be done using a
match decision functor. To set such a condition, derive a class from
Xapian::MatchDecider and override the function operator,
operator()(const Xapian::Document &doc). The operator can make a
decision based on the document values via
Xapian::Document::get_value(Xapian::valueno).

The functor will also have access to the document data stored in the
database (via Xapian::Document::get_data()), but beware that for
most database backends, this is an expensive operation to be calling
for a lot of documents, so doing that is likely to slow down the search
considerably.

Expand - Suggesting new terms for the query

Xapian also supports the idea of calculating terms to add to the query,
based on the relevant documents supplied. A set of such terms, together
with their weights, may be returned by:

Xapian::ESet Xapian::Enquire::get_eset(Xapian::termcount maxitems,
 const Xapian::RSet & rset,
 bool exclude_query_terms = true,
 bool use_exact_termfreq = false,
 double k = 1.0,
 const Xapian::ExpandDecider * edecider = 0) const;
Xapian::ESet Xapian::Enquire::get_eset(Xapian::termcount maxitems,
 const Xapian::RSet & rset,
 const Xapian::ExpandDecider * edecider) const

As for get_mset, up to maxitems expand terms will be returned,
with fewer being returned if and only if no more terms could be found.

The expand terms are returned in sorted weight order in an
Xapian::ESet item.

exclude_query_terms

By default terms which are already in the query will never be returned
by get_eset(). If exclude_query_terms is false) then query
terms may be returned.

use_exact_termfreq

By default, Xapian uses an approximation to the term frequency when
get_eset() is called when searching over multiple databases. This
approximation improves performance, and usually still returns good
results. If you’re willing to pay the performance penalty, you can get
Xapian to calculate the exact term frequencies by passing true for
use_exact_termfreq.

Expand decision functors

It is often useful to allow only certain classes of term to be returned
in the expand set. For example, there may be special terms in the
database with various prefixes, which should be removed from the expand
set. This is accomplished by providing a decision functor. To do this,
derive a class from Xapian::ExpandDecider and override the function
operator, operator()(const string &). The functor is called with
each term before it is added to the set, and it may accept (by returning
true) or reject (by returning false) the term as appropriate.

Thread safety

There’s no pthread specific code in Xapian. If you want to use the same
object concurrently from different threads, it’s up to you to police
access (with a mutex or in some other way) to ensure only one method is
being executed at once. The reason for this is to avoid adding the
overhead of locking and unlocking mutexes when they aren’t required. It
also makes the Xapian code easier to maintain, and simplifies building
it.

For most applications, this is unlikely to be an issue - generally the
calls to Xapian are likely to be from a single thread. And if they
aren’t, you can just create an entirely separate Xapian::Database object
in each thread - this is no different to accessing the same database
from two different processes.

Examples

Extensively documented examples of simple usage of the Xapian API for
creating databases and then for searching through them are given in the
QuickStart tutorial.

Further examples of usage of Xapian are available in the examples
subdirectory of xapian-core.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/geospatial.html

 Navigation

 		
 index

 		Xapian docs documentation »

Geospatial searching with Xapian

Table of contents

		Geospatial searching with Xapian
		Introduction

		Metrics

		Indexing

		Searching
		Sorting results by distance

		Filtering results by distance

		Ranking results on a combination of distance and relevance

		Performance

		References

Introduction

This document describes a set of features present in Xapian which are designed
to allow geospatial searches to be supported. Currently, the geospatial
support allows sets of locations to be stored associated with each document, as
latitude/longitude coordinates, and allows searches to be restricted or
reordered on the basis of distance from a second set of locations.

Three types of geospatial searches are supported:

		Returning a list of documents in order of distance from a query location.
This may be used in conjunction with any Xapian query.

		Returning a list of documents within a given distance of a query location.
This may be used in conjunction with any other Xapian query, and with any
Xapian sort order.

		Returning a set of documents in a combined order based on distance from a
query location, and relevance.

Locations are stored in value slots, allowing multiple independent locations to
be used for a single document. It is also possible to store multiple
coordinates in a single value slot, in which case the closest coordinate will
be used for distance calculations.

Metrics

A metric is a function which calculates the distance between two points.

Calculating the exact distance between two geographical points is an involved
subject. In fact, even defining the meaning of a geographical point is very
hard to do precisely - not only do you need to define a mathematical projection
used to calculate the coordinates, you also need to choose a model of the shape
of the Earth, and identify a few sample points to identify the coordinates of
particular locations. Since the Earth is constantly changing shape, these
coordinates also need to be defined at a particular date.

There are a few standard datums which define all these - a very common datum is
the WGS84 datum, which is the datum used by the GPS system. Unless you have a
good reason not to, we recommend using the WGS84 datum, since this will ensure
that preset parameters of the functions built in to Xapian will have the
correct values (currently, the only such parameter is the Earth radius used by
the GreatCircleMetric, but more may be added in future).

Since there are lots of ways of calculating distances between two points, using
different assumptions about the approximations which are valid, Xapian allows
user-implemented metrics. These are subclasses of the Xapian::LatLongMetric
class; see the API documentation for details on how to implement the various
required methods.

There is currently only one built-in metric - the GreatCircleMetric. As the
name suggests, this calculates the distance between a latitude and longitude
based on the assumption that the world is a perfect sphere. The radius of the
world can be specified as a constructor parameter, but defaults to a reasonable
approximation of the radius of the Earth. The calculation uses the haversine
formula, which is accurate for points which are close together, but can have
significant error for coordinates which are on opposite sides of the sphere: on
the other hand, such points are likely to be at the end of a ranked list of
search results, so this probably doesn’t matter.

Indexing

To index a set of documents with location, you need to store serialised
latitude-longitude coordinates in a value slot in your documents. To do this,
use the LatLongCoord class. For example, this is how you might store a
latitude and longitude corresponding to “London” in value slot 0:

Xapian::Document doc;
doc.add_value(0, Xapian::LatLongCoord(51.53, 0.08).serialise());

Of course, often a location is a bit more complicated than a single point - for
example, postcode regions in the UK can cover a fairly wide area. If a search
were to treat such a location as a single point, the distances returned could
be incorrect by as much as a couple of miles. Xapian therefore allows you to
store a set of points in a single slot - the distance calculation will return
the distance to the closest of these points. This is often a good enough work
around for this problem - if you require greater accuracy, you will need to
filter the results after they are returned from Xapian.

To store multiple coordinates in a single slot, use the LatLongCoords class:

Xapian::Document doc;
Xapian::LatLongCoords coords;
coords.append(Xapian::LatLongCoord(51.53, 0.08));
coords.append(Xapian::LatLongCoord(51.51, 0.07));
coords.append(Xapian::LatLongCoord(51.52, 0.09));
doc.add_value(0, coords.serialise());

(Note that the serialised form of a LatLongCoords object containing a single
coordinate is exactly the same as the serialised form of the corresponding
LatLongCoord object.)

Searching

Sorting results by distance

If you simply want your results to be returned in order of distance, you can
use the LatLongDistanceKeyMaker class to calculate sort keys. For example, to
return results in order of distance from the coordinate (51.00, 0.50), based on
the values stored in slot 0, and using the great-circle distance:

Xapian::Database db("my_database");
Xapian::Enquire enq(db);
enq.set_query(Xapian::Query("my_query"));
GreatCircleMetric metric;
LatLongCoord centre(51.00, 0.50);
Xapian::LatLongDistanceKeyMaker keymaker(0, centre, metric);
enq.set_sort_by_key(keymaker, False);

Filtering results by distance

To return only those results within a given distance, you can use the
LatLongDistancePostingSource. For example, to return only those results within
5 miles of coordinate (51.00, 0.50), based on the values stored in slot 0, and
using the great-circle distance:

Xapian::Database db("my_database");
Xapian::Enquire enq(db);
Xapian::Query q("my_query");
GreatCircleMetric metric;
LatLongCoord centre(51.00, 0.50);
double max_range = Xapian::miles_to_metres(5);
Xapian::LatLongDistancePostingSource ps(0, centre, metric, max_range)
q = Xapian::Query(Xapian::Query::OP_FILTER, q, Xapian::Query(ps));
enq.set_query(q);

Ranking results on a combination of distance and relevance

To return results ranked by a combination of their relevance and their
distance, you can also use the LatLongDistancePostingSource. Beware that
getting the right balance of weights is tricky: there is little solid
theoretical basis for this, so the best approach is often to try various
different parameters, evaluate the results, and settle on the best. The
LatLongDistancePostingSource returns a weight of 1.0 for a document which is at
the specified location, and a lower, but always positive, weight for points
further away. It has two parameters, k1 and k2, which control how fast the
weight decays, which can be specified to the constructor (but aren’t in this
example) - see the API documentation for details of these parameters.:

Xapian::Database db("my_database");
Xapian::Enquire enq(db);
Xapian::Query q("my_query");
GreatCircleMetric metric;
LatLongCoord centre(51.00, 0.50);
double max_range = Xapian::miles_to_metres(5);
Xapian::LatLongDistancePostingSource ps(0, centre, metric, max_range)
q = Xapian::Query(Xapian::Query::AND, q, Xapian::Query(ps));
enq.set_query(q);

Performance

The location information associated with each document is stored in a document
value. This allows it to be looked up quickly at search time, so that the
exact distance from the query location can be calculated. However, this method
requires that the distance of each potential match is checked, which can be
expensive.

To gain a performance boost, it is possible to store additional terms in
documents to identify regions at various scales. There are various ways to
generate such terms (for example, the O-QTM algorithm referenced below).
However, the encoding for coordinates that Xapian uses has some nice properties
which help here. Specifically, the standard encoded form for a coordinate used
is a 6 byte representation, which identifies a point on the surface of the
earth to an accuracy of 1/16 of a second (ie, at worst slightly less than 2
metre accuracy). However, this representation can be truncated to 2 bytes to
represent a bounding box 1 degree on a side, or to 3, 4 or 5 bytes to get
successively more accurate bounding boxes.

It would therefore be possible to gain considerable efficiency for range
restricted searches by storing terms holding each of these successively more
accurate representations, and to construct a query combining an appropriate set
of these terms to ensure that only documents which are potentially in a range
of interest are considered.

It is entirely possible that a more efficient implementation could be performed
using “R trees” or “KD trees” (or one of the many other tree structures used
for geospatial indexing - see http://en.wikipedia.org/wiki/Spatial_index for a
list of some of these). However, using the QTM approach will require minimal
effort and make use of the existing, and well tested, Xapian database.
Additionally, by simply generating special terms to restrict the search, the
existing optimisations of the Xapian query parser are taken advantage of.

References

The following may be of interest.

The O-QTM algorithm is described in “Dutton, G. (1996). Encoding and handling
geospatial data with hierarchical triangular meshes. In Kraak, M.J. and
Molenaar, M. (eds.) Advances in GIS Research II. London: Taylor & Francis,
505-518.” , a copy of which is available from
http://www.spatial-effects.com/papers/conf/GDutton_SDH96.pdf

Some of the geometry needed to calculate the correct set of QTM IDs to cover a
particular region is detailed in
ftp://ftp.research.microsoft.com/pub/tr/tr-2005-123.pdf

Also, see:
http://www.sdss.jhu.edu/htm/doc/c++/htmInterface.html

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/valueranges.html

 Navigation

 		
 index

 		Xapian docs documentation »

Value Ranges

Table of contents

		Value Ranges
		Introduction

		StringValueRangeProcessor

		DateValueRangeProcessor

		NumberValueRangeProcessor

		Custom subclasses

		Using Several ValueRangeProcessors

Introduction

The Xapian::ValueRangeProcessor was introduced in Xapian 1.0.0. It
provides a powerful and flexible way to parse range queries in the users’
query string.

This document describes the Xapian::ValueRangeProcessor class and
its standard subclasses, how to create your own subclasses, and how
these classes are used with Xapian::QueryParser.

Xapian::ValueRangeProcessor is a virtual base class, so you need to
use a subclass of it. Xapian::QueryParser maintains a list of
Xapian::ValueRangeProcessor objects which it tries in order for
each range search in the query until one accepts it, or all have been
tried (in which case an error is reported).

The Xapian::StringValueRangeProcessor subclass supports setting a prefix or
suffix string which must be present for the range to be recognised by that
object, and Xapian::DateValueRangeProcessor and
Xapian::NumberValueRangeProcessor are subclasses of this so also
support a prefix or suffix (since Xapian 1.1.2 - before this all there were
direct subclasses of Xapian::ValueRangeProcessor, with only
Xapian::NumberValueRangeProcessor supporting this).

So you can support multiple filters distinguished by a prefix or suffix. For
example, if you want to support range filters on price and weight, you can do
that like this:

Xapian::QueryParser qp;
Xapian::NumberValueRangeProcessor price_proc(0, "$", true);
Xapian::NumberValueRangeProcessor weight_proc(1, "kg", false);
qp.add_valuerangeprocessor(&price_proc);
qp.add_valuerangeprocessor(&weight_proc);

Then the user can enter queries like:

laptop $300..800 ..1.5kg

A common way to use this feature is with a prefix string which is a “field
name” followed by a colon, for example:

created:1/1/1999..1/1/2003

Each Xapian::ValueRangeProcessor is passed the start and end of the
range. If it doesn’t understand the range, it should return
Xapian::BAD_VALUENO. If it does understand the range, it should return
the value number to use with Xapian::Query::OP_VALUE_RANGE and if it
wants to, it can modify the start and end values (to convert them to the
correct format so that for the string comparison which OP_VALUE_RANGE
uses).

In Xapian 1.2.1 and later, Xapian::QueryParser supports open-ended
ranges - if the start of the range is empty, that means any value less than
the end, and similarly if the end is empty, that means any value greater
than the start. The start and end can’t both be empty.

StringValueRangeProcessor

This is the simplest of the standard subclasses. It understands any range
passed (so it should always be the last ValueRangeProcessor) and it
doesn’t alter the range start or end.

For example, suppose you have stored author names in value number 4, and want
the user to be able to filter queries by specifying ranges of values such as:

mars asimov..bradbury

To do this, you can use a StringValueRangeProcessor like so:

Xapian::QueryParser qp;
Xapian::StringValueRangeProcessor author_proc(4);
qp.add_valuerangeprocessor(&author_proc);

The parsed query will use OP_VALUE_RANGE, so query.get_description()
would report:

Xapian::Query(mars:(pos=1) FILTER (VALUE_RANGE 4 asimov bradbury)

The VALUE_RANGE subquery will only match documents where value 4 is
>= asimov and <= bradbury (using a string comparison).

DateValueRangeProcessor

This class allows you to implement date range searches. As well as the value
number to search, you can tell it whether to prefer US-style month/day/year
or European-style day/month/year, and specify the epoch year to use for
interpreting 2 digit years (the default is day/month/year with an epoch of
1970). The best choice of settings depends on the expectations of your users.
As these settings are only applied at search time, you can also easily offer
different versions of your search front-end with different settings if that is
useful.

For example, if your users are American and the dates present in your database
can extend a decade or so into the future, you might use something like this
which specifies to prefer US-style dates and that the epoch year is 1930 (so
02/01/29 is February 1st 2029 while 02/01/30 is February 1st 1930):

Xapian::QueryParser qp;
Xapian::DateValueRangeProcessor date_proc(0, true, 1930);
qp.add_valuerangeprocessor(&date_proc);

The dates are converted to the format YYYYMMDD, so the values you index also
need to also be in this format - for example, if doc_time is a time_t:

char buf[9];
if (strftime(buf, sizeof(buf), "%Y%m%d", gmtime(&doc_time))) {
 doc.add_value(0, buf);
}

NumberValueRangeProcessor

Note

This class had a design flaw in Xapian 1.0.0 and 1.0.1 - you should
avoid using it with releases of Xapian earlier than 1.0.2.

This class allows you to implement numeric range searches. The numbers used
may be any number which is representable as a double, but requires that the
stored values which the range is being applied have been converted to strings
at index time using the Xapian::sortable_serialise() method:

Xapian::Document doc;
doc.add_value(0, Xapian::sortable_serialise(price));

This method produces strings which will sort in numeric order, so you can use
it if you want to be able to sort based on the value in numeric order, too.

Custom subclasses

You can easily create your own subclasses of Xapian::ValueRangeProcessor.
Your subclass needs to implement a method
Xapian::valueno operator()(std::string &begin, std::string &end)
so for example you could implement a better version of the author range
described above which only matches ranges with a prefix (e.g.
author:asimov..bradbury) and lower-cases the names:

struct AuthorValueRangeProcessor : public Xapian::StringValueRangeProcessor {
 AuthorValueRangeProcessor()
 : StringValueRangeProcessor(4, "author:", true) { }

 Xapian::valueno operator()(std::string &begin, std::string &end) {
 // Let the base class do the prefix check.
 if (StringValueRangeProcessor::operator()(begin, end) == BAD_VALUENO)
 return BAD_VALUENO;
 begin = Xapian::Unicode::tolower(begin);
 end = Xapian::Unicode::tolower(end);
 return valno;
 }
};

If you want to support open-ended ranges, you need to handle begin or end
being empty suitably. Xapian::QueryParser won’t call your subclass
with both begin and end being empty.

Using Several ValueRangeProcessors

If you want to allow the user to specify different types of ranges, you can
specify multiple ValueRangeProcessor objects to use. Just add them in
the order you want them to be checked:

Xapian::QueryParser qp;
AuthorValueRangeProcessor author_proc();
qp.add_valuerangeprocessor(&author_proc);
Xapian::DateValueRangeProcessor date_proc(0, false, 1930);
qp.add_valuerangeprocessor(&date_proc);

And then you can parse queries such as
mars author:Asimov..Bradbury 01/01/1960..31/12/1969 successfully.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/quickstart.html

 Navigation

 		
 index

 		Xapian docs documentation »

Quickstart

The document contains a quick introduction to the basic concepts, and
then a walk-through development of a simple application using the Xapian
library, together with commentary on how the application could be taken
further. It deliberately avoids going into a lot of detail - see the
rest of the documentation for more detail.

Requirements

Before following the steps outlined in this document, you will need to
have the Xapian library installed on your system. For instructions on
obtaining and installing Xapian, read the Installation
document.

Databases

An information retrieval system using Xapian typically has two parts.
The first part is the indexer, which takes documents in various
formats, processes them so that they can be efficiently searched, and
stores the processed documents in an appropriate data structure (the
database). The second part is the searcher, which takes queries and
reads the database to return a list of the documents relevant to each
query.

The database is the data structure which ties the indexer and searcher
together, and is fundamental to the retrieval process. Given how
fundamental it is, it is unsurprising that different applications put
different demands on the database. For example, some applications may be
happy to deal with searching a static collection of data, but need to do
this extremely fast (for example, a web search engine which builds new
databases from scratch nightly or even weekly). Other applications may
require that new data can be added to the system incrementally, but
don’t require extremely high performance searching (perhaps an email
system, which is only being searched occasionally). There are many other
constraints which may be placed on an information retrieval system: for
example, it may be required to have small database sizes, even at the
expense of getting poorer results from the system.

To provide the required flexibility, Xapian has the ability to use one
of many available database backends, each of which satisfies a
different set of constraints, and stores its data in a different way.
Currently, these must be compiled into the whole system, and selected at
runtime, but the ability to dynamically load modules for each of these
backends is likely to be added in future, and would require little
design modification.

An example indexer

We now present sample code for an indexer. This is deliberately
simplified to make it easier to follow. You can also read it in an HTML
formatted version.

The “indexer” presented here is simply a small program which takes a
path to a database and a set of parameters defining a document on the
command line, and stores that document as a new entry in the database.

Include header files

The first requirement in any program using the Xapian library is to
include the Xapian header file, “xapian.h”:

#include <xapian.h>

We’re going to use C++ iostreams for output, so we need to include the
iostream header, and we’ll also import everything from namespace
std for convenience:

#include <iostream>
using namespace std;

Our example only has a single function, main(), so next we define
that:

int main(int argc, char **argv)

Options parsing

For this example we do very simple options parsing. We are going to use
the core functionality of Xapian of searching for specific terms in the
database, and we are not going to use any of the extra facilities, such
as the keys which may be associated with each document. We are also
going to store a simple string as the data associated with each
document.

Thus, our command line syntax is:

		Parameter 1 - the (possibly relative) path to the database.

		Parameter 2 - the string to be stored as the document data.

		Parameters 3 onward - the terms to be stored in the database. The
terms will be assumed to occur at successive positions in the
document.

The validity of a command line can therefore be checked very simply by
ensuring that there are at least 3 parameters:

if (argc < 4) {
 cout << "usage: " << argv[0] <<
 " <path to database> <document data> <document terms>" << endl;
 exit(1);
}

Catching exceptions

When an error occurs in Xapian it is reported by means of the C++
exception mechanism. All errors in Xapian are derived classes of
Xapian::Error, so simple error handling can be performed by
enclosing all the code in a try-catch block to catch any
Xapian::Error exceptions. A (hopefully) helpful message can be
extracted from the Xapian::Error object by calling its get_msg()
method, which returns a human readable string.

Note that all calls to the Xapian library should be performed inside a
try-catch block, since otherwise errors will result in uncaught
exceptions; this usually results in the execution aborting.

Note also that Xapian::Error is a virtual base class, and thus can’t be
copied: you must therefore catch exceptions by reference, as in the
following example code:

try {
 [code which accesses Xapian]
} catch (const Xapian::Error & error) {
 cout << "Exception: " << error.get_msg() << endl;
}

Opening the database

In Xapian, a database is opened for writing by creating a
Xapian::WritableDatabase object.

If you pass Xapian::DB_CREATE_OR_OPEN and there isn’t an existing
database in the specified directory, Xapian will try to create a new
empty database there. If there is already database in the specified
directory, it will be opened.

If an error occurs when trying to open a database, or to create a new
database, an exception, usually of type Xapian::DatabaseOpeningError
or Xapian::DatabaseCreateError, will be thrown.

The code to open a database for writing is, then:

Xapian::WritableDatabase database(argv[1], Xapian::DB_CREATE_OR_OPEN);

Preparing the new document

Now that we have the database open, we need to prepare a document to put
in it. This is done by creating a Xapian::Document object, filling this
with data, and then giving it to the database.

The first step, then, is to create the document:

Xapian::Document newdocument;

Each Xapian::Document has a “cargo” known as the document data.
This data is opaque to Xapian - the meaning of it is entirely
user-defined. Typically it contains information to allow results to be
displayed by the application, for example a URL for the indexed document
and some text which is to be displayed when returning the document as
search result.

For our example, we shall simply store the second parameter given on the
command line in the data field:

newdocument.set_data(string(argv[2]));

The next step is to put the terms which are to be used when searching
for the document into the Xapian::Document object.

We shall use the add_posting() method, which adds an occurrence of a
term to the struct. The first parameter is the “termname”, which is a
string defining the term. This string can be anything, as long as the
same string is always used to refer to the same term. The string will
often be the (possibly stemmed) text of the term, but might be in a
compressed, or even hashed, form. Most backends impose a limit on the
length of a termname (for chert the limit is 245 bytes).

The second parameter is the position at which the term occurs within the
document. These positions start at 1. This information is used for some
search features such as phrase matching or passage retrieval, but is not
essential to the search.

We add postings for terms with the termname given as each of the
remaining command line parameters:

for (int i = 3; i < argc; ++i) {
 newdocument.add_posting(argv[i], i - 2);
}

Adding the document to the database

Finally, we can add the document to the database. This simply involves
calling Xapian::WritableDatabase::add_document(), and passing it the
Xapian::Document object:

database.add_document(newdocument);

The operation of adding a document is atomic: either the document will
be added, or an exception will be thrown and the document will not be in
the new database.

add_document() returns a value of type Xapian::docid. This is
the document ID of the newly added document, which is simply a handle
which can be used to access the document in future.

Note that this use of add_document() is actually fairly inefficient:
if we had a large database, it would be desirable to group as many
document additions together as possible, by encapsulating them within a
session. For details of this, and of the transaction facility for
performing sets of database modifications atomically, see the API
Overview.

An example searcher

Now we show the code for a simple searcher, which will search the
database built by the indexer above. Again, you can read an HTML
formatted version.

The “searcher” presented here is, like the “indexer”, simply a small
command line driven program. It takes a path to a database and some
search terms, performs a probabilistic search for documents represented
by those terms and displays a ranked list of matching documents.

Setting up

Just like “quickstartindex”, we have a single-function example. So we
include the Xapian header file, and begin:

#include <xapian.h>

int main(int argc, char **argv)
{

Options parsing

Again, we are going to use no special options, and have a very simple
command line syntax:

		Parameter 1 - the (possibly relative) path to the database.

		Parameters 2 onward - the terms to be searched for in the
database.

The validity of a command line can therefore be checked very simply by
ensuring that there are at least 2 parameters:

if (argc < 3) {
 cout << "usage: " << argv[0] <<
 " <path to database> <search terms>" << endl;
 exit(1);
}

Catching exceptions

Again, this is performed just as it was for the simple indexer.

try {
 [code which accesses Xapian]
} catch (const Xapian::Error & error) {
 cout << "Exception: " << error.get_msg() << endl;
}

Specifying the databases

Xapian has the ability to search over many databases simultaneously,
possibly even with the databases distributed across a network of
machines. Each database can be in its own format, so, for example, we
might have a system searching across two remote databases and a local
chert database.

To open a single database, we create a Xapian::Database object, passing
the path to the database we want to open:

Xapian::Database db(argv[1]);

You can also search multiple database by adding them together using
Xapian::Database::add_database:

Xapian::Database databases;
databases.add_database(Xapian::Database(argv[1]));
databases.add_database(Xapian::Database(argv[2]));

Starting an enquire session

All searches across databases by Xapian are performed within the context
of an “Enquire” session. This session is represented by a
Xapian::Enquire object, and is across a specified collection of
databases. To change the database collection, it is necessary to open a
new enquire session, by creating a new Xapian::Enquire object.

Xapian::Enquire enquire(databases);

An enquire session is also the context within which all other database
reading operations, such as query expansion and reading the data
associated with a document, are performed.

Preparing to search

We are going to use all command line parameters from the second onward
as terms to search for in the database. For convenience, we shall store
them in an STL vector. This is probably the point at which we would want
to apply a stemming algorithm, or any other desired normalisation and
conversion operation, to the terms.

vector<string> queryterms;
for (int optpos = 2; optpos < argc; optpos++) {
 queryterms.push_back(argv[optpos]);
}

Queries are represented within Xapian by Xapian::Query objects, so
the next step is to construct one from our query terms. Conveniently
there is a constructor which will take our vector of terms and create an
Xapian::Query object from it.

Xapian::Query query(Xapian::Query::OP_OR, queryterms.begin(), queryterms.end());

You will notice that we had to specify an operation to be performed on
the terms (the Xapian::Query::OP_OR parameter). Queries in Xapian
are actually fairly complex things: a full range of boolean operations
can be applied to queries to restrict the result set, and probabilistic
weightings are then applied to order the results by relevance. By
specifying the OR operation, we are not performing any boolean
restriction, and are performing a traditional pure probabilistic search.

We now print a message out to confirm to the user what the query being
performed is. This is done with the Xapian::Query::get_description()
method, which is mainly included for debugging purposes, and displays a
string representation of the query.

cout << "Performing query `" <<
 query.get_description() << "'" << endl;

Performing the search

Now, we are ready to perform the search. The first step of this is to
give the query object to the enquire session:

enquire.set_query(query);

Next, we ask for the results of the search, which implicitly performs the
the search. We use the get_mset() method to get the results, which are
returned in an Xapian::MSet object. (MSet for Match Set)

get_mset() can take many parameters, such as a set of relevant
documents to use, and various options to modify the search, but we give
it the minimum, which is the first document to return (starting at 0 for
the top ranked document), and the maximum number of documents to return
(we specify 10 here):

Xapian::MSet matches = enquire.get_mset(0, 10);

Displaying the results of the search

Finally, we display the results of the search. The results are stored in
in the Xapian::MSet object, which provides the features required to
be an STL-compatible container, so first we display how many items are
in the MSet:

cout << matches.size() << " results found" << endl;

Now we display some information about each of the items in the
Xapian::MSet. We access these items using an
Xapian::MSetIterator:

		First, we display the document ID, accessed by *i. This is not
usually very useful information to give to users, but it is at least
a unique handle on each document.

		Next, we display the weight score for the document. The more relevant
a document is, the higher this values will be. We get this using
i.get_weight().

		Last, we display the data associated with each returned document,
which was specified by the user at database generation time. To do
this, we first use i.get_document() to get an
Xapian::Document object representing the returned document; then
we use the get_data() method of this object to get access to the
data stored in this document.

Xapian::MSetIterator i;
for (i = matches.begin(); i != matches.end(); ++i) {
 cout << "Document ID " << *i << "\t";
 cout << i.get_weight() << " ";
 Xapian::Document doc = i.get_document();
 cout << "[" << doc.get_data() << "]" << endl;
}

Compiling

Now that we have the code written, all we need to do is compile it!

Finding the Xapian library

A small utility, “xapian-config”, is installed along with Xapian to
assist you in finding the installed Xapian library, and in generating
the flags to pass to the compiler and linker to compile.

After a successful compilation, this utility should be in your path, so
you can simply run

xapian-config --cxxflags

to determine the flags to pass to the compiler, and

xapian-config --libs

to determine the flags to pass to the linker. These flags are returned
on the utility’s standard output (so you could use backtick notation to
include them on your command line).

If your project uses the GNU autoconf tool, you may also use the
XO_LIB_XAPIAN macro, which is included as part of Xapian, and will
check for an installation of Xapian and set (and AC_SUBST) the
XAPIAN_CXXFLAGS and XAPIAN_LIBS variables to be the flags to
pass to the compiler and linker, respectively.

If you don’t use GNU autoconf, don’t worry about this.

Compiling the quickstart examples

Once you know the compilation flags, compilation is a simple matter of
invoking the compiler! For our example, we could compile the two
utilities (quickstartindex and quickstartsearch) with the commands:

c++ `xapian-config --cxxflags` quickstartindex.cc `xapian-config --libs` -o quickstartindex
c++ `xapian-config --cxxflags` quickstartsearch.cc `xapian-config --libs` -o quickstartsearch

Running the examples

Once we have compiled the above examples, we can build up a simple
database as follows.

$./quickstartindex proverbs \
> "people who live in glass houses should not throw stones" \
> people live glass house stone
$./quickstartindex proverbs \
> "Don't look a gift horse in the mouth" \
> look gift horse mouth

For the first command, the database directory doesn’t already exist, so
Xapian will create it and also create the database files inside it. For
the second command, it will use the database which now exists, so
we should now have a database with a couple of documents in it. Looking
in the database directory, you should see something like:

$ ls proverbs/
[some files]

Given the small amount of data in the database, you may be concerned
that the total size of these files is a little over 32KB. Be reassured
that the database is block structured, here consisting of largely empty
blocks, and will behave much better for large databases.

We can now perform searches over the database using the quickstartsearch
program.

$./quickstartsearch proverbs look
Performing query 'look'
1 results found
Document ID 2 50% [Don't look a gift horse in the mouth]

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/bm25.html

 Navigation

 		
 index

 		Xapian docs documentation »

The BM25 Weighting Scheme

This is a technical note about the BM25 weighting scheme, which is the
default weighting scheme used by Xapian. Recent TREC tests have shown
BM25 to be the best of the known probabilistic weighting schemes. In
case you’re wondering, the BM simply stands for “Best Match”.

We’ll follow the evolution from the “traditional” probabilistic
weighting scheme (as described in the 1976 Robertson/Sparck Jones
paper [http://www.soi.city.ac.uk/~ser/papers/RSJ76.pdf]) through to
BM25.

The Traditional Probabilistic Weighting Scheme

In its most general form, the traditional probabilistic term weighting
function is:

where

		, are constants,

		q is the wqf, the within query frequency,

		f is the wdf, the within document frequency,

		n is the number of documents in the collection indexed by this term,

		N is the total number of documents in the collection,

		r is the number of relevant documents indexed by this term,

		R is the total number of relevant documents,

		L is the normalised document length (i.e. the length of this document
divided by the average length of documents in the collection).

The factors and are unnecessary here, but help
scale the weights, so the first component is 1 when etc. But
they are critical below when we add an extra item to the sum of term
weights.

BM11

Stephen Robertson’s BM11 uses formula for the term weights, but
adds an extra item to the sum of term weights to give the overall
document score:

where:

		 is the number of terms in the query (the query length),

		 is yet another constant.

Note that this extra item is zero when .

BM15

BM15 is BM11 with the in place of in .

BM25

BM25 combines the B11 and B15 with a scaling factor, b, which turns BM15
into BM11 as it moves from 0 to 1:

where:

BM25 originally introduced another constant, as a power to which f and K
are raised. However, Stephen remarks that powers other than 1 were ‘not
helpful’, and other tests confirm this, so Xapian’s implementation of
BM25 ignores this.

 and make up BM25, with which Stephen has had so much
recent success.

This does all seem somewhat ad-hoc, with so many unknown constants in
the formula. But note that with and we get the
traditional formula anyway.

The default parameter values Xapian uses are , ,
,and . These are reasonable defaults, but the
optimum values will vary with both the documents being searched and the
type of queries, so you may be able to improve the effectiveness of your
search system by tuning the values of these parameters.

In Xapian, we also apply a floor to L (0.5 by default) which helps stop
tiny documents get ridiculously high weights. And the matcher wants the
extra item in the sum to be positive, so we add (constant for a
given query) to to give:

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/queryparser.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian::QueryParser Syntax

This document describes the query syntax supported by the
Xapian::QueryParser class. The syntax is designed to be similar to other
web based search engines, so that users familiar with them don’t have to
learn a whole new syntax.

Operators

AND

expression AND expression matches documents which are matched by
both of the subexpressions.

OR

expression OR expression matches documents which are matched by
either of the subexpressions.

NOT

expression NOT expression matches documents which are matched by
only the first subexpression. This can also be written as expression
AND NOT expression. If FLAG_PURE_NOT is enabled, then

NOT expression will match documents which don’t match the
subexpression.

XOR

expression XOR expression matches documents which are matched by one
or other of the subexpressions, but not both. XOR is probably a bit
esoteric.

Bracketed expressions

You can control the precedence of the boolean operators using brackets.
In the query one OR two AND three the AND takes precedence, so this
is the same as one OR (two AND three). You can override the
precedence using (one OR two) AND three.

The default precedence from highest to lowest is:

		+, - (equal)

		AND, NOT (equal)

		XOR

		OR

‘+’ and ‘-‘

A group of terms with some marked with + and - will match documents
containing all of the + terms, but none of the - terms. Terms not marked
with + or - contribute towards the document rankings. You can also use +
and - on phrases and on bracketed expressions.

NEAR

one NEAR two NEAR three matches documents containing those words
within 10 words of each other. You can set the threshold to n by using
NEAR/n like so: one NEAR/6 two.

ADJ

ADJ is like NEAR but only matches if the words appear in the
same order as in the query. So one ADJ two ADJ three matches
documents containing those three words in that order and within 10 words
of each other. You can set the threshold to n by using ADJ/n like
so: one ADJ/6 two.

Phrase searches

A phrase surrounded with double quotes (“”) matches documents containing
that exact phrase. Hyphenated words are also treated as phrases, as are
cases such as filenames and email addresses (e.g. /etc/passwd or
president@whitehouse.gov).

Searching within a probabilistic field

If the database has been indexed with prefixes on probabilistic terms
from certain fields, you can set up a prefix map so that the user can
search within those fields. For example author:dickens title:shop
might find documents by dickens with shop in the title. You can also
specify a prefix on a quoted phrase (e.g. author:"charles dickens")
or on a bracketed subexpression (e.g. title:(mice men)).

Searching for proper names

If a query term is entered with a capitalised first letter, then it will
be searched for unstemmed.

Range searches

The QueryParser can be configured to support
range-searching using document values.

The syntax for a range search is start..end - for example,
01/03/2007..04/04/2007, $10..100, 5..10kg.

Open-ended ranges are also supported - an empty start or end is
interpreted as no limit, for example: ..2010-06-17, $10..,
$..100, ..5kg.

Synonyms

The QueryParser can be configured to support synonyms, which can either
be used when explicitly specified (using the syntax ~term) or
implicitly (synonyms will be used for all terms or groups of terms for
which they have been specified).

Wildcards

The QueryParser supports using a trailing ‘*’ wildcard, which matches
any number of trailing characters, so wildc* would match wildcard,
wildcarded, wildcards, wildcat, wildcats, etc. This feature is disabled
by default - pass Xapian::QueryParser::FLAG_WILDCARD in the flags
argument of Xapian::QueryParser::parse_query(query_string, flags) to
enable it, and tell the QueryParser which database to expand wildcards
from using the QueryParser::set_database(database) method.

You can limit the number of terms a wildcard will expand to by
calling Xapian::QueryParser::set_max_wildcard_expansion(). If a
wildcard expands to more terms than that number, an exception will be
thrown. The exception may be thrown by the QueryParser, or later when
Enquire handles the query. The default is not to limit the expansion.

Partially entered query matching

The QueryParser also supports performing a search with a query which has
only been partially entered. This is intended for use with “incremental
search” systems, which don’t wait for the user to finish typing their
search before displaying an initial set of results. For example, in such
a system a user would enter a search, and the system would display a new
set of results after each letter, or whenever the user pauses for a
short period of time (or some other similar strategy).

The problem with this kind of search is that the last word in a
partially entered query often has no semantic relation to the completed
word. For example, a search for “dynamic cat” would return a quite
different set of results to a search for “dynamic categorisation”. This
results in the set of results displayed flicking rapidly as each new
character is entered. A much smoother result can be obtained if the
final word is treated as having an implicit terminating wildcard, so
that it matches all words starting with the entered characters - thus,
as each letter is entered, the set of results displayed narrows down to
the desired subject.

A similar effect could be obtained simply by enabling the wildcard
matching option, and appending a “*” character to each query string.
However, this would be confused by searches which ended with punctuation
or other characters.

This feature is disabled by default - pass
Xapian::QueryParser::FLAG_PARTIAL flag in the flags argument of
Xapian::QueryParser::parse_query(query_string, flags) to enable it,
and tell the QueryParser which database to expand wildcards from using
the QueryParser::set_database(database) method.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/remote.html

 Navigation

 		
 index

 		Xapian docs documentation »

Remote Backend

This document describes how to make use of the facilities in Xapian for
distributed searches.

Overview

There are two sides to the distributed searching. The client end is the
program initiating the search on behalf of a user, and the server end is
the program which provides a searching interface over a set of databases
for the client. There can be many servers, with many clients sharing
them. In theory, a server can also be a client to other servers, but
this may not be very useful or efficient.

The client runs queries in the same way that it would on local databases
- the difference is in how the database is opened. Once the database is
opened, the query process is identical to any other. Using a stub
database with “auto” backend is a good way to wrap up access to a remote
database in a neat way.

The remote backend currently support two client/server methods: prog and
tcp. They both use the same protocol, although different means to
contact the server.

The Prog Method

The prog method spawns a program when the database is opened, and
communicates with it over a pipe. This can be used to connect to a
remote Xapian database across an SSH tunnel for example, providing
authentication and encryption. The xapian-progsrv program is designed to
be the program at the far end of the connection.

From the client end, create the database with
Xapian::Database database(Xapian::Remote::open(program, args)); -
for example:

Xapian::Database database(Xapian::Remote::open("ssh", "search.example.com xapian-progsrv /var/lib/xapian/data/db1"));

If the program has no path, the PATH environment variable is used.

The TCP Method

The tcp method uses TCP/IP sockets to connect to a running server on a
remote machine (or indeed a local one, but that’s rather pointless!)

From the client end, create the database with
Xapian::Database database(Xapian::Remote::open(host, port)); - for
example:

Xapian::Database database(Xapian::Remote::open("searchserver", 33333));

The host is the server’s hostname, the port is the tcp port on the
server to use.

The server is xapian-tcpsrv, which is installed by xapian-core’s
“make install”. This should be started and left running in the
background before searches are performed.

One or more databases need to be specified by listing their paths.

There’s also one required command line option for xapian-tcpsrv: --port
PORTNUM, which specifies the port to listen on. For the full list of
accepted command line options, run xapian-tcpsrv --help or see the
xapian-tcpsrv man page.

Once started, the server will run and listen for connections on the
specified port. Each connection is handled by a forked child process
(or a new thread under Windows), so concurrent read access is supported.

Notes

A remote search should behave just like the equivalent local one, except
a few features aren’t currently implemented (e.g. spelling, synonyms,
user metadata).

Exceptions are propagated across the link and thrown again at the client
end.

The remote backend now support writable databases. Just start
xapian-progsrv or xapian-tcpsrv with the option --writable.
Only one database may be specified when --writable is used.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/synonyms.html

 Navigation

 		
 index

 		Xapian docs documentation »

Xapian Synonym Support

Table of contents

		Xapian Synonym Support
		Introduction

		Model

		QueryParser Integration

		Current Limitations
		Explicit multi-word synonyms

		Backend Support

Introduction

Xapian provides support for storing a synonym dictionary, or thesaurus. This
can be used by the Xapian::QueryParser class to expand terms in user query
strings, either automatically, or when requested by the user with an explicit
synonym operator (~).

Note that Xapian doesn’t offer automated generation of the synonym dictionary.

Model

The model for the synonym dictionary is that a term or group of consecutive
terms can have one or more synonym terms. A group of consecutive terms is
specified in the dictionary by simply joining them with a single space between
each one.

QueryParser Integration

In order for any of the synonym features of the QueryParser to work, you must
call QueryParser::set_database() to specify the database to use.

If FLAG_SYNONYM is passed to QueryParser::parse_query() then the
QueryParser will recognise ~ in front of a term as indicating a request for
synonym expansion. If FLAG_LOVEHATE is also specified, you can use +
and - before the ~ to indicate that you love or hate the synonym
expanded expression.

A synonym-expanded term becomes the term itself OR-ed with any listed synonyms,
so ~truck might expand to truck OR lorry OR van. A group of terms is
handled in much the same way.

If a term to be synonym expanded will be stemmed by the QueryParser, then
synonyms will be checked for the unstemmed form first, and then for the stemmed
form, so you can provide different synonyms for particular unstemmed forms
if you want to.

If FLAG_AUTO_SYNONYMS is passed to QueryParser::parse_query() then the
QueryParser will automatically expand any term which has synonyms, unless the
term is in a phrase or similar.

If FLAG_AUTO_MULTIWORD_SYNONYMS is passed to QueryParser::parse_query()
then the QueryParser will look at groups of terms separated only by whitespace
and try to expand them as term groups. This is done in a “greedy” fashion, so
the first term which can start a group is expanded first, and the longest group
starting with that term is expanded. After expansion, the QueryParser will
look for further possible expansions starting with the term after the last
term in the expanded group.

Current Limitations

Explicit multi-word synonyms

There ought to be a way to explicitly request expansion of multi-term synonyms,
probably with the syntax ~"stock market". This hasn’t been implemented
yet though.

Backend Support

Currently synonyms are supported by the chert and glass databases. They work
with a single database or multiple databases (use Database::add_database() as
usual). We’ve no plans to support them for the InMemory backend, but we do
intend to support them for the remote backend in the future.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/sorting.html

 Navigation

 		
 index

 		Xapian docs documentation »

Sorting of Search Results

Table of contents

		Sorting of Search Results
		Introduction

		Sorting by Relevance

		Sorting by Other Properties
		Sorting by Value

		Sorting by Generated Key

Introduction

By default, Xapian orders search results by decreasing relevance score.
However, it also allows results to be ordered by other criteria, or
a mixture of other criteria and relevance score.

If two or more results compare equal by the sorting criteria, then their order
is decided by their document ids. By default, the document ids sort in
ascending order (so a lower document id is “better”), but this can be set
to descending using enquire.set_docid_order(enquire.DESCENDING);. If you
have no preference, you can tell Xapian to use whatever order is most efficient
using enquire.set_docid_order(enquire.DONT_CARE);.

Sorting by Relevance

The BM25 weighting formula which Xapian uses by default has a number of
parameters. We have picked some default parameter values which do a good job
in general. The optimal values of these parameters depend on the data being
indexed and the type of queries being run, so you may be able to improve the
effectiveness of your search system by adjusting these values, but it’s a
fiddly process to tune them so people tend not to bother.

See the BM25 documentation for more details of BM25.

The other included weighting schemes are TradWeight and BoolWeight.

TradWeight implements the original probabilistic weighting formula, which is
essentially a special case of BM25 (it’s BM25 with k2 = 0, k3 = 0, b = 1, and
min_normlen = 0, except that the weights are scaled by a constant factor).

BoolWeight assigns a weight of 0 to all documents, so the ordering is
determined solely by other factors.

You can also implement your own weighting scheme, provided it can be expressed
in the form of a sum over the matching terms, plus an extra term which depends
on term-independent statistics (such as the normalised document length).

For example, here’s an implementation of “coordinate matching” - each matching
term scores one point:

class CoordinateWeight : public Xapian::Weight {
 public:
 CoordinateWeight * clone() const { return new CoordinateWeight; }
 CoordinateWeight() { }
 ~CoordinateWeight() { }

 std::string name() const { return "Coord"; }
 std::string serialise() const { return ""; }
 CoordinateWeight * unserialise(const std::string &) const {
 return new CoordinateWeight;
 }

 double get_sumpart(Xapian::termcount, Xapian::termcount, Xapian::termcount) const {
 return 1;
 }
 double get_maxpart() const { return 1; }

 double get_sumextra(Xapian::termcount, Xapian::termcount) const { return 0; }
 double get_maxextra() const { return 0; }

 bool get_sumpart_needs_doclength() const { return false; }
};

Sorting by Other Properties

If you want to offer a “sort by date” feature, and can arrange for documents to
be indexed in date order (or a close-enough approximation), then you can
implement a very efficient “sort by date” feature by using a boolean search
(i.e. call enquire.set_weighting_scheme(Xapian::BoolWeight());) with
enquire.set_docid_order(Xapian::Enquire::DESCENDING); (for newest first) or
enquire.set_docid_order(Xapian::Enquire::ASCENDING); (for oldest first).
There’s no inherent reason why this technique can’t be used for sorting by
something other than date, but it’s usually much easier to arrange for new
documents to arrive in date order than in other orders.

Sorting by Value

You can order documents by comparing a specified document value. Note that the
comparison used compares the byte values in the value (i.e. it’s a string sort
ignoring locale), so 1 < 10 < 2. If you want to encode the value
such that it sorts numerically, use Xapian::sortable_serialise() to encode
values at index time - this works equally will on integers and floating point
values:

Xapian::Document doc;
doc.add_value(0, Xapian::sortable_serialise(price));

There are three methods which are used to specify how the value is used to
sort, depending if/how you want relevance used in the ordering:

		Enquire::set_sort_by_value() specifies the relevance doesn’t affect the
ordering at all.

		Enquire::set_sort_by_value_then_relevance() specifies that relevance is
used for ordering any groups of documents for which the value is the same.

		Enquire::set_sort_by_relevance_then_value() specifies that documents are
ordered by relevance, and the value is only used to order groups of documents
with identical relevance values (note: the weight has to be the same, not
just the rounded percentage score). This method isn’t very useful with the
default BM25 weighting, which rarely assigns identical scores to
different documents.

Sorting by Generated Key

To allow more elaborate sorting schemes, Xapian allows you to provide a functor
object subclassed from Xapian::KeyMaker which generates a sort key for each
matching document which is under consideration. This is called at most once
for each document, and then the generated sort keys are ordered by comparing
byte values (i.e. with a string sort ignoring locale).

There’s a standard subclass Xapian::MultiValueKeyMaker which allows sorting
on more than one document value (so the first document value specified
determines the order except among groups which have the same value, when
the second document value specified is used, and so on).

Xapian::KeyMaker can also be subclassed to offer features such as “sort by
geographical distance”. A subclass could take a coordinate pair - e.g.
(latitude, longitude) - for the user’s location and sort results using
coordinates stored in a document value so that the nearest results ranked
highest.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

xapian-core/docs/deprecation.html

 Navigation

 		
 index

 		Xapian docs documentation »

Deprecation

Table of contents

		Deprecation
		Introduction

		Deprecation Procedure
		Deprecation markers

		API and ABI compatibility

		Experimental features

		Deprecation in the bindings

		Support for Other Software

		How to avoid using deprecated features

		Features currently marked for deprecation
		Native C++ API

		Bindings

		Omega

		Features removed from Xapian
		Native C++ API

		Bindings

		Omega

Introduction

Xapian’s API is fairly stable and has been polished piece by piece over time,
but it still occasionally needs to be changed. This may be because a new
feature has been implemented and the interface needs to allow access to it, but
it may also be required in order to polish a rough edge which has been missed
in earlier versions of Xapian, or simply to reflect an internal change which
requires a modification to the external interface.

We aim to make such changes in a way that allows developers to work against a
stable API, while avoiding the need for the Xapian developers to maintain too
many old historical interface artefacts. This document describes the process
we use to deprecate old pieces of the API, lists parts of the API which are
currently marked as deprecated, and also describes parts of the API which have
been deprecated for some time, and are now removed from the Xapian library.

It is possible for functions, methods, constants, types or even whole classes
to be deprecated, but to save words this document will often use the term
“features” to refer collectively to any of these types of interface items.

Deprecation Procedure

Deprecation markers

At any particular point, some parts of the C++ API will be marked as
“deprecated”. Deprecated features are annotated in the API headers with macros
such as XAPIAN_DEPRECATED(), which will cause compilers with appropriate
support (such as GCC 3.1 or later, and MSVC 7.0 or later) to emit compile-time
warnings if these features are used.

If a feature is marked with one of these markers, you should avoid using it in
new code, and should migrate your code to use a replacement when possible. The
documentation comments for the feature, or the list at the end
of this file, will describe possible alternatives to the deprecated feature.

If you want to disable deprecation warnings temporarily, you can do so
by passing "-DXAPIAN_DEPRECATED(X)=X" to the compiler (the quotes are
needed to protect the brackets from the shell). If your build system uses
make, you might do this like so:

make 'CPPFLAGS="-DXAPIAN_DEPRECATED(X)=X"'

API and ABI compatibility

Releases are given three-part version numbers (e.g. 1.2.9), the three parts
being termed “major” (1), “minor” (2), and “revision” (9). Releases with
the same major and minor version are termed a “release series”.

For Xapian releases 1.0.0 and higher, an even minor version indicates a stable
release series, while an odd minor version indicates a development release
series.

Within a stable release series, we strive to maintain API and ABI forwards
compatibility. This means that an application written and compiled against
version X.Y.a of Xapian should work, without any source changes or need to
recompile, with a later version X.Y.b, for all b >= a.
Stable releases which increase the minor or major version number will usually
change the ABI incompatibly (so that code will need to be recompiled against
the newer release series. They may also make incompatible API changes,
though we will attempt to do this in a way which makes it reasonably easy to
migrate applications, and document how to do so in this document.

It is possible that a feature may be marked as deprecated within a minor
release series - that is from version X.Y.c
onwards, where c is not zero. The API and ABI will not be changed by this
deprecation, since the feature will still be available in the API (though the
change may cause the compiler to emit new warnings when rebuilding code
which uses the now-deprecated feature).

Users should generally be able to expect working code which uses Xapian not to
stop working without reason. We attempt to codify this in the following
policy, but we reserve the right not to slavishly follow this. The spirit of
the rule should kept in mind - for example if we discovered a feature which
didn’t actually work, making an incompatible API change at the next ABI bump
would be reasonable.

Normally a feature will be supported after being deprecated for an entire
stable release series. For example, if a feature is deprecated in release
1.2.0, it will be supported for the entire 1.2.x release series, and removed in
development release 1.3.0. If a feature is deprecated in release 1.2.1, it
will be supported for the 1.2.x and 1.4.x stable release series (and of
course the 1.3.x release series in between), and won’t be removed until
1.5.0.

Experimental features

During a development release series (such as the 1.1.x series), some features
may be marked as “experimental”. Such features are liable to change without
going through the normal deprecation procedure. This includes changing on-disk
formats for data stored by the feature, and breaking API and ABI compatibility
between releases for the feature. Such features are included in releases to
get wider use and corresponding feedback about them.

Deprecation in the bindings

When the Xapian API changes, the interface provided by the Xapian bindings will
usually change in step. In addition, it is sometimes necessary to change the
way in which Xapian is wrapped by bindings - for example, to provide a better
convenience wrapper for iterators in Python. Again, we aim to ensure that an
application written (and compiled, if the language being bound is a compiled
language) for version X.Y.a of Xapian should work without any changes or need
to recompile, with a later version X.Y.b, for all a <= b.

However, the bindings are a little less mature than the core C++ API, so we
don’t intend to give the same guarantee that a feature present and not
deprecated in version X.Y.a will work in all versions X+1.Y.b. In other
words, we may remove features which have been deprecated without waiting for
an entire release series to pass.

Any planned deprecations will be documented in the list of deprecations and
removed features at the end of this file.

Support for Other Software

Support for other software doesn’t follow the same deprecation rules as
for API features.

Our guiding principle for supporting version of other software is that
we don’t aim to actively support versions which are no longer supported
“upstream”.

So Xapian 1.1.0 doesn’t support PHP4 because the PHP team no longer did
when it was released. By the API deprecation rules we should have announced
this when Xapian 1.0.0 was released, but we don’t have control over when and
to what timescales other software providers discontinue support for older
versions.

Sometimes we can support such versions without extra effort (e.g. Tcl’s
stubs mechanism means Tcl 8.1 probably still works, even though the last
8.1.x release was over a decade ago), and in some cases Linux distros
continue to support software after upstream stops.

But in most cases keeping support around is a maintenance overhead and
we’d rather spend our time on more useful things.

Note that there’s no guarantee that we will support and continue to
support versions just because upstream still does. For example, we ceased
providing backported packages for Ubuntu dapper with Xapian 1.1.0 - in this
case, it’s because we felt that if you’re conservative enough to run dapper,
you’d probably prefer to stick with 1.0.x until you upgrade to hardy (the next
Ubuntu LTS release). But we may decide not to support versions for other
reasons too.

How to avoid using deprecated features

We recommend taking the following steps to avoid depending on deprecated
features when writing your applications:

		If at all possible, test compile your project using a compiler which
supports warnings about deprecated features (such as GCC 3.1 or later), and
check for such warnings. Use the -Werror flag to GCC to ensure that you
don’t miss any of them.

		Check the NEWS file for each new release for details of any new features
which are deprecated in the release.

		Check the documentation comments, or the automatically extracted API
documentation, for each feature you use in your application. This
documentation will indicate features which are deprecated, or planned for
deprecation.

		For applications which are not written in C++, there is currently no
equivalent of the XAPIAN_DEPRECATED macro for the bindings, and thus
there is no way for the bindings to give a warning if a deprecated feature
is used. This would be a nice addition for those languages in which there
is a reasonable way to give such warnings. Until such a feature is
implemented, all application writers using the bindings can do is to check
the list of deprecated features in each new release, or lookup the features
they are using in the list at the end of this file.

Features currently marked for deprecation

Native C++ API

		Deprecated
		Remove
		Feature name
		Upgrade suggestion and comments

		1.1.0
		?
		Xapian::WritableDatabase::flush()
		Xapian::WritableDatabase::commit() should be used instead.

Bindings

		Deprecated
		Remove
		Language
		Feature name
		Upgrade suggestion and comments

		1.2.5
		1.5.0
		Python
		MSet.items
		Iterate the MSet object itself instead.

		1.2.5
		1.5.0
		Python
		ESet.items
		Iterate the ESet object itself instead.

Omega

		Deprecated
		Remove
		Feature name
		Upgrade suggestion and comments

		1.2.5
		1.5.0
		$set{spelling,true}
		Use $set{flag_spelling_suggestion,true} instead.

Features removed from Xapian

Native C++ API

		Removed
		Feature name
		Upgrade suggestion and comments

		1.0.0
		QueryParser::set_stemming_options()
		Use set_stemmer(), set_stemming_strategy() and/or set_stopper()
instead:

		set_stemming_options("") becomes
set_stemming_strategy(Xapian::QueryParser::STEM_NONE)

		set_stemming_options("none") becomes
set_stemming_strategy(Xapian::QueryParser::STEM_NONE)

		set_stemming_options(LANG) becomes
set_stemmer(Xapian::Stem(LANG) and
set_stemming_strategy(Xapian::QueryParser::STEM_SOME)

		set_stemming_options(LANG, false) becomes
set_stemmer(Xapian::Stem(LANG) and
set_stemming_strategy(Xapian::QueryParser::STEM_SOME)

		set_stemming_options(LANG, true) becomes
set_stemmer(Xapian::Stem(LANG) and
set_stemming_strategy(Xapian::QueryParser::STEM_ALL)

If a third parameter is passed, set_stopper(PARAM3) and treat the first two
parameters as above.

		1.0.0
		Enquire::set_sort_forward()
		Use Enquire::set_docid_order() instead:

		set_sort_forward(true) becomes set_docid_order(ASCENDING)

		set_sort_forward(false) becomes set_docid_order(DESCENDING)

		1.0.0
		Enquire::set_sorting()
		Use Enquire::set_sort_by_relevance(), Enquire::set_sort_by_value(), or
Enquire::set_sort_by_value_then_relevance() instead.

		set_sorting(KEY, 1) becomes set_sort_by_value(KEY)

		set_sorting(KEY, 1, false) becomes set_sort_by_value(KEY)

		set_sorting(KEY, 1, true) becomes set_sort_by_value_then_relevance(KEY)

		set_sorting(ANYTHING, 0) becomes set_sort_by_relevance()

		set_sorting(Xapian::BAD_VALUENO, ANYTHING) becomes
set_sort_by_relevance()

		1.0.0
		Stem::stem_word(word)
		Use Stem::operator()(word) instead.

		1.0.0
		Auto::open(path)
		Use the Database(path) constructor instead.

		1.0.0
		Auto::open(path, action)
		Use the WritableDatabase(path, action) constructor instead.

		1.0.0
		Query::is_empty()
		Use Query::empty() instead.

		1.0.0
		Document::add_term_nopos()
		Use Document::add_term() instead.

		1.0.0
		Enquire::set_bias()
		Use PostingSource instead (new in 1.2).

		1.0.0
		ExpandDecider::operator()
		Return type is now bool not int.

		1.0.0
		MatchDecider::operator()
		Return type is now bool not int.

		1.0.0
		Error::get_type()
		Return type is now const char * not std::string. Most existing code
won’t need changes, but if it does the simplest fix is to write
std::string(e.get_type()) instead of e.get_type().

		1.0.0
		<xapian/output.h>
		Use cout << obj.get_description(); instead of cout << obj;

		1.0.0
		Several constructors marked
as explicit.
		Explicitly create the object type required, for example use
Xapian::Enquire enq(Xapian::Database(path)); instead of
Xapian::Enquire enq(path);

		1.0.0
		QueryParser::parse_query() throwing
const char * exception.
		Catch Xapian::QueryParserError instead of const char *, and call
get_msg() on the caught object. If you need to build with either version,
catch both (you’ll need to compile the part which catches QueryParserError
conditionally, since this exception isn’t present in the 0.9 release series).

		1.1.0
		xapian_version_string()
		Use version_string() instead.

		1.1.0
		xapian_major_version()
		Use major_version() instead.

		1.1.0
		xapian_minor_version()
		Use minor_version() instead.

		1.1.0
		xapian_revision()
		Use revision() instead.

		1.1.0
		Enquire::include_query_terms
		Use Enquire::INCLUDE_QUERY_TERMS instead.

		1.1.0
		Enquire::use_exact_termfreq
		Use Enquire::USE_EXACT_TERMFREQ instead.

		1.1.0
		Error::get_errno()
		Use Error::get_error_string() instead.

		1.1.0
		Enquire::register_match_decider()
		This method didn’t do anything, so just remove calls to it!

		1.1.0
		Query::Query(Query::op, Query)
		This constructor isn’t useful for any currently implemented
Query::op.

		1.1.0
		The Quartz backend
		Use the Chert backend instead.

		1.1.0
		Quartz::open()
		Use Chert::open() instead.

		1.1.0
		quartzcheck
		Use xapian-check instead.

		1.1.0
		quartzcompact
		Use xapian-compact instead.

		1.1.0
		quartzdump
		Use xapian-inspect instead.

		1.1.0
		configure –enable-debug
		configure –enable-assertions

		1.1.0
		configure –enable-debug=full
		configure –enable-assertions –enable-log

		1.1.0
		configure –enable-debug=partial
		configure –enable-assertions=partial

		1.1.0
		configure –enable-debug=profile
		configure –enable-log=profile

		1.1.0
		configure –enable-debug-verbose
		configure –enable-log

		1.1.0
		Database::positionlist_begin()
throwing RangeError if the
term specified doesn’t index the
document specified.
		This check is quite expensive, and often you don’t care. If you
do it’s easy to check - just open a TermListIterator for the
document and use skip_to() to check if the term is there.

		1.1.0
		Database::positionlist_begin()
throwing DocNotFoundError if
the document specified doesn’t
exist.
		This check is quite expensive, and often you don’t care. If you
do, it’s easy to check - just call Database::get_document() with the
specified document ID.

		1.1.5
		delve -k
		Accepted as an undocumented alias for -V since 0.9.10 for compatibility with 0.9.9
and earlier. Just use -V instead.

		1.3.0
		The Flint backend
		Use the Chert backend instead.

		1.3.0
		Flint::open()
		Use Chert::open() instead.

		1.3.0
		xapian-chert-update
		Install Xapian 1.2.x (where x >= 5) to update chert databases from 1.1.3 and
earlier.

		1.3.0
		Default second parameter to
Enquire sorting functions.
		The parameter name was ascending and defaulted to true. However
ascending=false gave what you’d expect the default sort order to be (and probably
think of as ascending) while ascending=true gave the reverse (descending) order.
For sanity, we renamed the parameter to reverse and deprecated the default
value. In the more distant future, we’ll probably add a default again, but of
false instead.

The methods affected are:
Enquire::set_sort_by_value(Xapian::valueno sort_key)
Enquire::set_sort_by_key(Xapian::Sorter * sorter)
Enquire::set_sort_by_value_then_relevance(Xapian::valueno sort_key)
Enquire::set_sort_by_key_then_relevance(Xapian::Sorter * sorter)
Enquire::set_sort_by_relevance_then_value(Xapian::valueno sort_key)
Enquire::set_sort_by_relevance_then_key(Xapian::Sorter * sorter)

To update them, just add a second parameter with value true to each of the
above calls. For the methods which take a Xapian::Sorter object, you’ll also
need to migrate to Xapian::KeyMaker (see below).

		1.3.0
		Sorter abstract base class.
		Use KeyMaker class instead, which has the same semantics, but has been renamed
to indicate that the keys produced may be used for purposes other than sorting (we
plan to allow collapsing on generated keys in the future).

		1.3.0
		MultiValueSorter class.
		Use MultiValueKeyMaker class instead. Note that MultiValueSorter::add()
becomes MultiValueKeyMaker::add_value(), but the sense of the direction flag
is reversed (to be consistent with Enquire::set_sort_by_value()), so:

MultiValueSorter sorter;
// Primary ordering is forwards on value 4.
sorter.add(4);
// Secondary ordering is reverse on value 5.
sorter.add(5, false);

becomes:

MultiValueKeyMaker sorter;
// Primary ordering is forwards on value 4.
sorter.add_value(4);
// Secondary ordering is reverse on value 5.
sorter.add_value(5, true);

		1.3.0
		matchspy parameter to
Enquire::get_mset()
		Use the newer MatchSpy class and Enquire::add_matchspy() method instead.

		1.3.0
		Xapian::timeout typedef
		Use POSIX useconds_t (from <sys/types.h>) instead, which should also work
with older Xapian releases.

		1.3.0
		Xapian::percent typedef
		Use int instead, which should also work with older Xapian releases.

		1.3.0
		Xapian::weight typedef
		Use double instead, which should also work with older Xapian releases.

		1.3.0
		Xapian::Query::unserialise()
throws
Xapian::SerialisationError not
Xapian::InvalidArgumentError
for errors in serialised data
		To be compatible with older and newer Xapian, you can catch both exceptions.

		1.3.1
		Xapian::ErrorHandler
		We feel the current ErrorHandler API doesn’t work at the right level (it only
works in Enquire, whereas you should be able to handle errors at the Database
level too) and we can’t find any evidence that people are actually using it.
So we are deprecating it and will replace it with something better thought out,
probably during the 1.3.x development series. There’s so further thoughts at
http://trac.xapian.org/ticket/3#comment:8

		1.3.2
		Xapian::Auto::open_stub()
		Use the constructor with Xapian::DB_BACKEND_STUB flag (new in 1.3.2) instead.

		1.3.2
		Xapian::Chert::open()
		Use the constructor with Xapian::DB_BACKEND_CHERT flag (new in 1.3.2) instead.

		1.3.2
		The Brass backend
		Use the Glass backend instead.

		1.3.2
		Xapian::Brass::open()
		Use the constructor with Xapian::DB_BACKEND_GLASS flag (new in 1.3.2) instead.

Bindings

		Removed
		Language
		Feature name
		Upgrade suggestion and comments

		1.0.0
		SWIG
[1]
		Enquire::set_sort_forward()
		Use Enquire::set_docid_order() instead.

		set_sort_forward(true) becomes set_docid_order(ASCENDING)

		set_sort_forward(false) becomes set_docid_order(DESCENDING)

		1.0.0
		SWIG
[1]
		Enquire::set_sorting()
		Use Enquire::set_sort_by_relevance(), Enquire::set_sort_by_value()
or Enquire::set_sort_by_value_then_relevance() instead.

		set_sorting(KEY, 1) becomes set_sort_by_value(KEY)

		set_sorting(KEY, 1, false) becomes ``set_sort_by_value(KEY)

		set_sorting(KEY, 1, true) becomes
set_sort_by_value_then_relevance(KEY)

		set_sorting(ANYTHING, 0) becomes set_sort_by_relevance()

		set_sorting(Xapian::BAD_VALUENO, ANYTHING) becomes
set_sort_by_relevance()

		1.0.0
		SWIG
[1]
		Auto::open(path)
		Use the Database(path) constructor instead.

		1.0.0
		SWIG
[1]
		Auto::open(path, action)
		Use the WritableDatabase(path, action) constructor instead.

		1.0.0
		SWIG
[3]
		MSet::is_empty()
		Use MSet::empty() instead.

		1.0.0
		SWIG
[3]
		ESet::is_empty()
		Use ESet::empty() instead.

		1.0.0
		SWIG
[3]
		RSet::is_empty()
		Use RSet::empty() instead.

		1.0.0
		SWIG
[3]
		Query::is_empty()
		Use Query::empty() instead.

		1.0.0
		SWIG
[1]
		Document::add_term_nopos()
		Use Document::add_term() instead.

		1.0.0
		CSharp
		ExpandDecider::Apply()
		Return type is now bool instead of int.

		1.0.0
		CSharp
		MatchDecider::Apply()
		Return type is now bool instead of int.

		1.0.0
		SWIG
[1]
		Stem::stem_word(word)
		Use Stem::operator()(word) instead. [4]

		1.1.0
		SWIG
[1]
		xapian_version_string()
		Use version_string() instead.

		1.1.0
		SWIG
[1]
		xapian_major_version()
		Use major_version() instead.

		1.1.0
		SWIG
[1]
		xapian_minor_version()
		Use minor_version() instead.

		1.1.0
		SWIG
[1]
		xapian_revision()
		Use revision() instead.

		1.1.0
		SWIG
[1]
		ESetIterator::get_termname()
		Use ESetIterator::get_term() instead. This change is intended to
bring the ESet iterators in line with other term iterators, which all
support get_term() instead of get_termname().

		1.1.0
		Python
		get_description()
		All get_description() methods have been renamed to __str__(),
so the normal python str() function can be used.

		1.1.0
		Python
		MSetItem.get_*()
		All these methods are deprecated, in favour of properties.
To convert, just change msetitem.get_FOO() to msetitem.FOO

		1.1.0
		Python
		Enquire.get_matching_terms
		Replaced by Enquire.matching_terms, for consistency with
rest of Python API. Note: an Enquire.get_matching_terms method existed in
releases up-to and including 1.2.4, but this was actually an old implementation
which only accepted a MSetIterator as a parameter, and would have failed with
code written expecting the version in 1.0.0. It was fully removed after
release 1.2.4.

		1.1.0
		SWIG
[1]
		Error::get_errno()
		Use Error::get_error_string() instead.

		1.1.0
		SWIG
[2]
		MSet::get_document_id()
		Use MSet::get_docid() instead.

		1.2.0
		Python
		mset[i][xapian.MSET_DID] etc
		This was inadvertently removed in 1.2.0, but not noticed until 1.2.5, by which
point it no longer seemed worthwhile to reinstate it. Please use the property
API instead, e.g. mset[i].docid, mset[i].weight, etc.

		1.2.5
		Python
		if idx in mset
		This was nominally implemented, but never actually worked. Since nobody seems
to have noticed in 3.5 years, we just removed it. If you have uses (which were
presumably never called), you can replace them with:
if idx >= 0 and idx < len(mset)

		1.3.0
		Python
		Non-pythonic iterators
		Use the pythonic iterators instead.

		1.3.0
		Python
		Stem_get_available_languages
		Use Stem.get_available_languages instead (static method instead of function)

		[1]		(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) This affects all SWIG generated bindings (currently: Python, PHP, Ruby, Tcl8 and CSharp)

		[2]		This affects all SWIG-generated bindings except those for Ruby, support for which was added after the function was deprecated in Xapian-core.

		[3]		(1, 2, 3, 4) This affects all SWIG generated bindings except those for Ruby, which was added after the function was deprecated in Xapian-core, and PHP, where empty is a reserved word (and therefore, the method remains “is_empty”).

		[4]		Python handles this like C++. Ruby renames it to ‘call’ (idiomatic Ruby). PHP renames it to ‘apply’. CSharp to ‘Apply’ (delegates could probably be used to provide C++-like functor syntax, but that’s effort and it seems debatable if it would actually be more natural to a C# programmer). Tcl8 renames it to ‘apply’ - need to ask a Tcl type if that’s the best solution.

Omega

		Removed
		Feature name
		Upgrade suggestion and comments

		1.0.0
		$freqs
		Use $map{$queryterms,$_: $nice{$freq{$_}}} instead.

		1.0.0
		scriptindex -u
		-u was ignored for compatibility with 0.7.5 and earlier, so just remove it.

		1.0.0
		scriptindex -q
		-q was ignored for compatibility with 0.6.1 and earlier, so just remove it.

		1.1.0
		scriptindex index=nopos
		Use indexnopos instead.

		1.3.0
		OLDP CGI parameter
		Use xP CGI parameter instead (direct replacement), which has been supported
since at least 0.5.0.

 © Copyright 2011, The Xapian Authors.
 Created using Sphinx 1.2.2.

